Construction of nanorod-shaped TiO2/Cu3N p–n heterojunction for efficient visible-light hydrogen evolution

Developing highly efficient and low-cost photoelectrocatalyst for H2 evolution under visible-light irradiation is a key topic in the areas of energy and environment. In this work, we designed and deposited p-type semiconductor Cu3N onto 1D n-type rutile TiO2 nanorod array by the magnetron sputtering...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2024, Vol.12 (20), p.7366-7376
Hauptverfasser: Cheng, Zhengwang, Gan, Neng, Yuan, Gang, Wang, Aobo, Liu, Jiyan, Lv, Hui, Han, Changcun, Wang, Mei, Luoshan, Mengdai, Ma, Xinguo, Zou, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing highly efficient and low-cost photoelectrocatalyst for H2 evolution under visible-light irradiation is a key topic in the areas of energy and environment. In this work, we designed and deposited p-type semiconductor Cu3N onto 1D n-type rutile TiO2 nanorod array by the magnetron sputtering method. The formed TiO2/Cu3N p–n heterojunction not only exhibits a narrowed band gap from 3.09 eV for TiO2 to 2.01 eV for TiO2/Cu3N but also expands the light-response from UV to visible-light region. In addition, the lifetime, separation and transfer of the photogenerated electron–hole pairs are efficiently prolonged and improved due to the build-in electric field at the interface of the TiO2/Cu3N p–n heterojunction. As a result, the photocurrent density under >420 nm visible-light irradiation is enhanced for about 14.12 times, from −0.33 mA cm−2 for TiO2 to −4.66 mA cm−2 for TiO2/Cu3N at −0.97 V vs. RHE (reversible hydrogen electrode). Furthermore, the constructed TiO2/Cu3N heterojunction shows stable PEC H2 evolution performance, with the H2 production rate reaching 6.98 μmol cm−2 h−1 under >420 nm visible-light irradiation. Our results suggest that the construction of nontoxic p–n heterojunction with suitable band gap should be a promising strategy to improve the photoelectrocatalytic performance of TiO2 and should be applied in other photoelectrocatalysts.
ISSN:2050-7526
2050-7534
DOI:10.1039/d4tc00916a