On squared distance matrix of complete multipartite graphs
Let G = K n 1 , n 2 , ⋯ , n t be a complete t -partite graph on n = ∑ i = 1 t n i vertices. The distance between vertices i and j in G , denoted by d ij is defined to be the length of the shortest path between i and j . The squared distance matrix Δ ( G ) of G is the n × n matrix with ( i , j ) th e...
Gespeichert in:
Veröffentlicht in: | Indian journal of pure and applied mathematics 2024-06, Vol.55 (2), p.517-537 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 537 |
---|---|
container_issue | 2 |
container_start_page | 517 |
container_title | Indian journal of pure and applied mathematics |
container_volume | 55 |
creator | Das, Joyentanuj Mohanty, Sumit |
description | Let
G
=
K
n
1
,
n
2
,
⋯
,
n
t
be a complete
t
-partite graph on
n
=
∑
i
=
1
t
n
i
vertices. The distance between vertices
i
and
j
in
G
, denoted by
d
ij
is defined to be the length of the shortest path between
i
and
j
. The squared distance matrix
Δ
(
G
)
of
G
is the
n
×
n
matrix with
(
i
,
j
)
th
entry equal to 0 if
i
=
j
and equal to
d
ij
2
if
i
≠
j
. We define the squared distance energy
E
Δ
(
G
)
of
G
to be the sum of the absolute values of its eigenvalues. We determine the inertia of
Δ
(
G
)
and compute the squared distance energy
E
Δ
(
G
)
. More precisely, we prove that if
n
i
≥
2
for
1
≤
i
≤
t
, then
E
Δ
(
G
)
=
8
(
n
-
t
)
and if
h
=
|
{
i
:
n
i
=
1
}
|
≥
1
, then
8
(
n
-
t
)
+
2
(
h
-
1
)
≤
E
Δ
(
G
)
<
8
(
n
-
t
)
+
2
h
.
Furthermore, we show that for a fixed value of
n
and
t
, both the spectral radius of the squared distance matrix and the squared distance energy of complete
t
-partite graphs on
n
vertices are maximal for complete split graph
S
n
,
t
and minimal for Turán graph
T
n
,
t
. |
doi_str_mv | 10.1007/s13226-023-00386-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3057774142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057774142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-86cc5ee2f1034630e3b17cf95c8f2d5e3c9264d8409d424979c0bb67da8e47a3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4GrAdfTknriT4g0K3XQf0kymTmlnpkkG9O1NHcGdq3Phv8CH0C2BewKgHhJhlEoMlGEApiWmZ2gGRgmsuBTnZQdisBBaX6KrlHYAkoExM_S46qp0HF0MdVW3KbvOh-rgcmw_q76pfH8Y9iGX17jP7eBibsuxjW74SNfoonH7FG5-5xytX57Xize8XL2-L56W2FMFGWvpvQiBNgQYL62BbYjyjRFeN7QWgXlDJa81B1Nzyo0yHjYbqWqnA1eOzdHdFDvE_jiGlO2uH2NXGi0DoZTihNOiopPKxz6lGBo7xPbg4pclYE-I7ITIFkT2B5E9mdhkSkXcbUP8i_7H9Q3Re2jM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057774142</pqid></control><display><type>article</type><title>On squared distance matrix of complete multipartite graphs</title><source>EZB-FREE-00999 freely available EZB journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Das, Joyentanuj ; Mohanty, Sumit</creator><creatorcontrib>Das, Joyentanuj ; Mohanty, Sumit</creatorcontrib><description>Let
G
=
K
n
1
,
n
2
,
⋯
,
n
t
be a complete
t
-partite graph on
n
=
∑
i
=
1
t
n
i
vertices. The distance between vertices
i
and
j
in
G
, denoted by
d
ij
is defined to be the length of the shortest path between
i
and
j
. The squared distance matrix
Δ
(
G
)
of
G
is the
n
×
n
matrix with
(
i
,
j
)
th
entry equal to 0 if
i
=
j
and equal to
d
ij
2
if
i
≠
j
. We define the squared distance energy
E
Δ
(
G
)
of
G
to be the sum of the absolute values of its eigenvalues. We determine the inertia of
Δ
(
G
)
and compute the squared distance energy
E
Δ
(
G
)
. More precisely, we prove that if
n
i
≥
2
for
1
≤
i
≤
t
, then
E
Δ
(
G
)
=
8
(
n
-
t
)
and if
h
=
|
{
i
:
n
i
=
1
}
|
≥
1
, then
8
(
n
-
t
)
+
2
(
h
-
1
)
≤
E
Δ
(
G
)
<
8
(
n
-
t
)
+
2
h
.
Furthermore, we show that for a fixed value of
n
and
t
, both the spectral radius of the squared distance matrix and the squared distance energy of complete
t
-partite graphs on
n
vertices are maximal for complete split graph
S
n
,
t
and minimal for Turán graph
T
n
,
t
.</description><identifier>ISSN: 0019-5588</identifier><identifier>EISSN: 0975-7465</identifier><identifier>DOI: 10.1007/s13226-023-00386-2</identifier><language>eng</language><publisher>New Delhi: Indian National Science Academy</publisher><subject>Apexes ; Applications of Mathematics ; Eigenvalues ; Graph theory ; Graphs ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Original Research ; Shortest-path problems</subject><ispartof>Indian journal of pure and applied mathematics, 2024-06, Vol.55 (2), p.517-537</ispartof><rights>The Indian National Science Academy 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-86cc5ee2f1034630e3b17cf95c8f2d5e3c9264d8409d424979c0bb67da8e47a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13226-023-00386-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13226-023-00386-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Das, Joyentanuj</creatorcontrib><creatorcontrib>Mohanty, Sumit</creatorcontrib><title>On squared distance matrix of complete multipartite graphs</title><title>Indian journal of pure and applied mathematics</title><addtitle>Indian J Pure Appl Math</addtitle><description>Let
G
=
K
n
1
,
n
2
,
⋯
,
n
t
be a complete
t
-partite graph on
n
=
∑
i
=
1
t
n
i
vertices. The distance between vertices
i
and
j
in
G
, denoted by
d
ij
is defined to be the length of the shortest path between
i
and
j
. The squared distance matrix
Δ
(
G
)
of
G
is the
n
×
n
matrix with
(
i
,
j
)
th
entry equal to 0 if
i
=
j
and equal to
d
ij
2
if
i
≠
j
. We define the squared distance energy
E
Δ
(
G
)
of
G
to be the sum of the absolute values of its eigenvalues. We determine the inertia of
Δ
(
G
)
and compute the squared distance energy
E
Δ
(
G
)
. More precisely, we prove that if
n
i
≥
2
for
1
≤
i
≤
t
, then
E
Δ
(
G
)
=
8
(
n
-
t
)
and if
h
=
|
{
i
:
n
i
=
1
}
|
≥
1
, then
8
(
n
-
t
)
+
2
(
h
-
1
)
≤
E
Δ
(
G
)
<
8
(
n
-
t
)
+
2
h
.
Furthermore, we show that for a fixed value of
n
and
t
, both the spectral radius of the squared distance matrix and the squared distance energy of complete
t
-partite graphs on
n
vertices are maximal for complete split graph
S
n
,
t
and minimal for Turán graph
T
n
,
t
.</description><subject>Apexes</subject><subject>Applications of Mathematics</subject><subject>Eigenvalues</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Original Research</subject><subject>Shortest-path problems</subject><issn>0019-5588</issn><issn>0975-7465</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4GrAdfTknriT4g0K3XQf0kymTmlnpkkG9O1NHcGdq3Phv8CH0C2BewKgHhJhlEoMlGEApiWmZ2gGRgmsuBTnZQdisBBaX6KrlHYAkoExM_S46qp0HF0MdVW3KbvOh-rgcmw_q76pfH8Y9iGX17jP7eBibsuxjW74SNfoonH7FG5-5xytX57Xize8XL2-L56W2FMFGWvpvQiBNgQYL62BbYjyjRFeN7QWgXlDJa81B1Nzyo0yHjYbqWqnA1eOzdHdFDvE_jiGlO2uH2NXGi0DoZTihNOiopPKxz6lGBo7xPbg4pclYE-I7ITIFkT2B5E9mdhkSkXcbUP8i_7H9Q3Re2jM</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Das, Joyentanuj</creator><creator>Mohanty, Sumit</creator><general>Indian National Science Academy</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>On squared distance matrix of complete multipartite graphs</title><author>Das, Joyentanuj ; Mohanty, Sumit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-86cc5ee2f1034630e3b17cf95c8f2d5e3c9264d8409d424979c0bb67da8e47a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apexes</topic><topic>Applications of Mathematics</topic><topic>Eigenvalues</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Original Research</topic><topic>Shortest-path problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Joyentanuj</creatorcontrib><creatorcontrib>Mohanty, Sumit</creatorcontrib><collection>CrossRef</collection><jtitle>Indian journal of pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Joyentanuj</au><au>Mohanty, Sumit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On squared distance matrix of complete multipartite graphs</atitle><jtitle>Indian journal of pure and applied mathematics</jtitle><stitle>Indian J Pure Appl Math</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>55</volume><issue>2</issue><spage>517</spage><epage>537</epage><pages>517-537</pages><issn>0019-5588</issn><eissn>0975-7465</eissn><abstract>Let
G
=
K
n
1
,
n
2
,
⋯
,
n
t
be a complete
t
-partite graph on
n
=
∑
i
=
1
t
n
i
vertices. The distance between vertices
i
and
j
in
G
, denoted by
d
ij
is defined to be the length of the shortest path between
i
and
j
. The squared distance matrix
Δ
(
G
)
of
G
is the
n
×
n
matrix with
(
i
,
j
)
th
entry equal to 0 if
i
=
j
and equal to
d
ij
2
if
i
≠
j
. We define the squared distance energy
E
Δ
(
G
)
of
G
to be the sum of the absolute values of its eigenvalues. We determine the inertia of
Δ
(
G
)
and compute the squared distance energy
E
Δ
(
G
)
. More precisely, we prove that if
n
i
≥
2
for
1
≤
i
≤
t
, then
E
Δ
(
G
)
=
8
(
n
-
t
)
and if
h
=
|
{
i
:
n
i
=
1
}
|
≥
1
, then
8
(
n
-
t
)
+
2
(
h
-
1
)
≤
E
Δ
(
G
)
<
8
(
n
-
t
)
+
2
h
.
Furthermore, we show that for a fixed value of
n
and
t
, both the spectral radius of the squared distance matrix and the squared distance energy of complete
t
-partite graphs on
n
vertices are maximal for complete split graph
S
n
,
t
and minimal for Turán graph
T
n
,
t
.</abstract><cop>New Delhi</cop><pub>Indian National Science Academy</pub><doi>10.1007/s13226-023-00386-2</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-5588 |
ispartof | Indian journal of pure and applied mathematics, 2024-06, Vol.55 (2), p.517-537 |
issn | 0019-5588 0975-7465 |
language | eng |
recordid | cdi_proquest_journals_3057774142 |
source | EZB-FREE-00999 freely available EZB journals; SpringerLink Journals - AutoHoldings |
subjects | Apexes Applications of Mathematics Eigenvalues Graph theory Graphs Mathematics Mathematics and Statistics Numerical Analysis Original Research Shortest-path problems |
title | On squared distance matrix of complete multipartite graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20squared%20distance%20matrix%20of%20complete%20multipartite%20graphs&rft.jtitle=Indian%20journal%20of%20pure%20and%20applied%20mathematics&rft.au=Das,%20Joyentanuj&rft.date=2024-06-01&rft.volume=55&rft.issue=2&rft.spage=517&rft.epage=537&rft.pages=517-537&rft.issn=0019-5588&rft.eissn=0975-7465&rft_id=info:doi/10.1007/s13226-023-00386-2&rft_dat=%3Cproquest_cross%3E3057774142%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3057774142&rft_id=info:pmid/&rfr_iscdi=true |