On squared distance matrix of complete multipartite graphs
Let G = K n 1 , n 2 , ⋯ , n t be a complete t -partite graph on n = ∑ i = 1 t n i vertices. The distance between vertices i and j in G , denoted by d ij is defined to be the length of the shortest path between i and j . The squared distance matrix Δ ( G ) of G is the n × n matrix with ( i , j ) th e...
Gespeichert in:
Veröffentlicht in: | Indian journal of pure and applied mathematics 2024-06, Vol.55 (2), p.517-537 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
=
K
n
1
,
n
2
,
⋯
,
n
t
be a complete
t
-partite graph on
n
=
∑
i
=
1
t
n
i
vertices. The distance between vertices
i
and
j
in
G
, denoted by
d
ij
is defined to be the length of the shortest path between
i
and
j
. The squared distance matrix
Δ
(
G
)
of
G
is the
n
×
n
matrix with
(
i
,
j
)
th
entry equal to 0 if
i
=
j
and equal to
d
ij
2
if
i
≠
j
. We define the squared distance energy
E
Δ
(
G
)
of
G
to be the sum of the absolute values of its eigenvalues. We determine the inertia of
Δ
(
G
)
and compute the squared distance energy
E
Δ
(
G
)
. More precisely, we prove that if
n
i
≥
2
for
1
≤
i
≤
t
, then
E
Δ
(
G
)
=
8
(
n
-
t
)
and if
h
=
|
{
i
:
n
i
=
1
}
|
≥
1
, then
8
(
n
-
t
)
+
2
(
h
-
1
)
≤
E
Δ
(
G
)
<
8
(
n
-
t
)
+
2
h
.
Furthermore, we show that for a fixed value of
n
and
t
, both the spectral radius of the squared distance matrix and the squared distance energy of complete
t
-partite graphs on
n
vertices are maximal for complete split graph
S
n
,
t
and minimal for Turán graph
T
n
,
t
. |
---|---|
ISSN: | 0019-5588 0975-7465 |
DOI: | 10.1007/s13226-023-00386-2 |