Mesh-Dependent L2-Like Norm a Posteriori Error Estimates for Elliptic Problems with Non-essential Boundary Conditions

This work is concerned with the proof of L 2 -like norm residual-type a posteriori error estimates for finite element methods for elliptic problems with non-essential boundary conditions, such as Neumann or Robin type. To ensure the proof of lower bounds (efficiency), a non-standard mesh-dependent L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2024-07, Vol.100 (1), p.8
Hauptverfasser: Chrysafinos, Konstantinos, Georgoulis, Emmanuil H., Papadopoulos, Vassilis D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work is concerned with the proof of L 2 -like norm residual-type a posteriori error estimates for finite element methods for elliptic problems with non-essential boundary conditions, such as Neumann or Robin type. To ensure the proof of lower bounds (efficiency), a non-standard mesh-dependent L 2 -like norm is used for the error. The proof of lower bounds requires a carefully constructed C 1 -conforming ’bubble’-function. A series of numerical experiments is presented, showcasing the good performance of the estimators.
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-024-02559-5