Mesh-Dependent L2-Like Norm a Posteriori Error Estimates for Elliptic Problems with Non-essential Boundary Conditions
This work is concerned with the proof of L 2 -like norm residual-type a posteriori error estimates for finite element methods for elliptic problems with non-essential boundary conditions, such as Neumann or Robin type. To ensure the proof of lower bounds (efficiency), a non-standard mesh-dependent L...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2024-07, Vol.100 (1), p.8 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work is concerned with the proof of
L
2
-like norm residual-type
a posteriori
error estimates for finite element methods for elliptic problems with non-essential boundary conditions, such as Neumann or Robin type. To ensure the proof of lower bounds (efficiency), a non-standard mesh-dependent
L
2
-like norm is used for the error. The proof of lower bounds requires a carefully constructed
C
1
-conforming ’bubble’-function. A series of numerical experiments is presented, showcasing the good performance of the estimators. |
---|---|
ISSN: | 0885-7474 1573-7691 |
DOI: | 10.1007/s10915-024-02559-5 |