Changes in cladoceran assemblage composition linked to early nineteenth century canal construction, land-use changes, and recent climate change in a macrophyte-dominated Ontario lake

The Rideau Canal (Ontario, Canada) was constructed in the early 1830s, primarily as a means to transport military personnel, but now is primarily recreational. The construction of the canal and associated flooding, as well as other land-use changes, likely impacted lakes within the system, however,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of paleolimnology 2024-06, Vol.72 (1), p.49-61
Hauptverfasser: Graves, Emma L., Balasubramaniam, Kapillesh, Rühland, Kathleen M., Paterson, Andrew M., Smol, John P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Rideau Canal (Ontario, Canada) was constructed in the early 1830s, primarily as a means to transport military personnel, but now is primarily recreational. The construction of the canal and associated flooding, as well as other land-use changes, likely impacted lakes within the system, however, long-term monitoring data are not available. Furthermore, recent environmental changes, including accelerated climate warming, are affecting lake ecosystems. Shallow, macrophyte-dominated Lake Opinicon, which is part of the canal system, has been impacted by other various catchment disturbances over the past ~ 200 years. A previous diatom-based paleolimnological study conducted on the lake, examining a core collected in 1995, found that the diatom responses to a host of large-scale catchment disturbances were moderate compared to nearby deeper lakes. A more recent diatom-based study conducted on a 2019 core (the same core used in the present study) found similar results; however, over the most recent ~ 25–30 years a striking shift in diatom assemblage composition was documented, coinciding with increased regional climate warming. Nothing is known concerning long-term changes within the primary consumers linked to the array of disturbances. Here, we examined changes in cladoceran assemblages over the past ~200 years, using the 2019 sediment core, to track their response to various environmental stressors including climate warming. We found that pelagic Bosmina and Daphnia species began to increase in the early nineteenth century, consistent with the flooding of the lake during canal construction. The most ecologically notable changes in the cladoceran record, however, occurred in the most recent sediments. These were characterized by marked declines (often to trace abundances) in several littoral taxa, concurrent with a further increase in the relative abundance of small, pelagic Bosmina spp. This most recent compositional shift was consistent with accelerated regional climate warming and associated limnological changes, decreased total phosphorus (TP) concentrations, and changing food sources. These changes in primary consumers will likely cascade throughout the food web.
ISSN:0921-2728
1573-0417
DOI:10.1007/s10933-024-00319-x