Non-Invasive Readout of the Kinetic Inductance of Superconducting Nanostructures
The energy landscape of multiply connected superconducting structures is ruled by fluxoid quantization due to the implied single-valuedness of the complex wave function. The transitions and interaction between these energy states, each defined by a specific phase winding number, are governed by clas...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The energy landscape of multiply connected superconducting structures is ruled by fluxoid quantization due to the implied single-valuedness of the complex wave function. The transitions and interaction between these energy states, each defined by a specific phase winding number, are governed by classical and/or quantum phase slips. Understanding these events requires the ability to probe, non-invasively, the state of the ring. Here, we employ a niobium resonator to examine the superconducting properties of an aluminum loop. By applying a magnetic field, adjusting temperature, and altering the loop's dimensions via focused ion beam milling, we correlate resonance frequency shifts with changes in the loop's kinetic inductance. This parameter is a unique indicator of the superconducting condensate's state, facilitating the detection of phase slips in nanodevices and providing insights into their dynamics. Our method presents a proof-of-principle spectroscopic technique with promising potential for investigating the Cooper pair density in inductively coupled superconducting nanostructures. |
---|---|
ISSN: | 2331-8422 |