Deformation of Residual Intersections
It is shown that in a Cohen-Macaulay local ring, the generic linkage of an ideal \(I\) is a deformation of the arbitrary linkage of \(I\). This fact does not need \(I\) to be a Cohen-Macaulay ideal. The same holds for \(s\)-residual intersections of \(I\) when \(s\) does not exceed the height of \(I...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that in a Cohen-Macaulay local ring, the generic linkage of an ideal \(I\) is a deformation of the arbitrary linkage of \(I\). This fact does not need \(I\) to be a Cohen-Macaulay ideal. The same holds for \(s\)-residual intersections of \(I\) when \(s\) does not exceed the height of \(I\) by one. Under some slight conditions on \(I\), one further generalizes this principle to encompass any \(s\)-residual intersection. |
---|---|
ISSN: | 2331-8422 |