Rates of robust superlinear convergence of preconditioned Krylov methods for elliptic FEM problems

This paper considers the iterative solution of finite element discretizations of second-order elliptic boundary value problems. Mesh independent estimations are given for the rate of superlinear convergence of preconditioned Krylov methods, involving the connection between the convergence rate and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2024-06, Vol.96 (2), p.719-738
Hauptverfasser: Castillo, S. J., Karátson, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers the iterative solution of finite element discretizations of second-order elliptic boundary value problems. Mesh independent estimations are given for the rate of superlinear convergence of preconditioned Krylov methods, involving the connection between the convergence rate and the Lebesgue exponent of the data. Numerical examples demonstrate the theoretical results.
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-023-01663-1