Data-driven modelling of the regular and chaotic dynamics of an inverted flag from experiments
We use video footage of a water-tunnel experiment to construct a 2-D reduced-order model of the flapping dynamics of an inverted flag in uniform flow. The model is obtained as the reduced dynamics on a 2-D attracting spectral submanifold (SSM) that emanates from the two slowest modes of the unstable...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2024-05, Vol.987, Article R7 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use video footage of a water-tunnel experiment to construct a 2-D reduced-order model of the flapping dynamics of an inverted flag in uniform flow. The model is obtained as the reduced dynamics on a 2-D attracting spectral submanifold (SSM) that emanates from the two slowest modes of the unstable fixed point of the flag. Beyond an unstable fixed point and a limit cycle expected from observations, our SSM-reduced model also confirms the existence of two unstable fixed points for the flag, which were found by previous studies. Importantly, the model correctly reconstructs the dynamics from a small number of general trajectories and no further information on the system. In the chaotic flapping regime, we construct a 4-D SSM-reduced model that captures the system's chaotic attractor. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2024.411 |