Modeling ocean eddies using exact solutions of the Charney–Obukhov equation
New exact solutions of the Charney–Obukhov equation for the ocean are obtained in the form of a partial superposition of elementary solutions with different wave numbers. The boundary conditions for the ocean are satisfied due to the presence of a carrier zonal flow in the solution. The existing arb...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2024-05, Vol.36 (5) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | New exact solutions of the Charney–Obukhov equation for the ocean are obtained in the form of a partial superposition of elementary solutions with different wave numbers. The boundary conditions for the ocean are satisfied due to the presence of a carrier zonal flow in the solution. The existing arbitrariness in the choice of wave numbers and other solution parameters makes it possible to simulate an arbitrary stream function profile at a fixed ocean depth on an interval of a fixed length using a Fourier series or in a circle of a fixed radius using a Fourier–Bessel series. An example of modeling a Gaussian stream function profile on the ocean surface in the presence of circular symmetry is considered. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0213276 |