On Spectral Radius and Energy of a Graph with Self-Loops
The spectral radius of a square matrix is the maximum among absolute values of its eigenvalues. Suppose a square matrix is nonnegative; then, by Perron–Frobenius theory, it will be one among its eigenvalues. In this paper, Perron–Frobenius theory for adjacency matrix of graph with self-loops AGS wil...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2024, Vol.2024, p.1-7 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The spectral radius of a square matrix is the maximum among absolute values of its eigenvalues. Suppose a square matrix is nonnegative; then, by Perron–Frobenius theory, it will be one among its eigenvalues. In this paper, Perron–Frobenius theory for adjacency matrix of graph with self-loops AGS will be explored. Specifically, it discusses the nontrivial existence of Perron–Frobenius eigenvalue and eigenvector pair in the matrix AGS−σnI, where σ denotes the number of self-loops. Also, Koolen–Moulton type bound for the energy of graph GS is explored. In addition, the existence of a graph with self-loops for every odd energy is proved. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2024/7056478 |