On Spectral Radius and Energy of a Graph with Self-Loops

The spectral radius of a square matrix is the maximum among absolute values of its eigenvalues. Suppose a square matrix is nonnegative; then, by Perron–Frobenius theory, it will be one among its eigenvalues. In this paper, Perron–Frobenius theory for adjacency matrix of graph with self-loops AGS wil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2024, Vol.2024, p.1-7
Hauptverfasser: Vivek Anchan, Deekshitha, H. J., Gowtham, D’Souza, Sabitha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The spectral radius of a square matrix is the maximum among absolute values of its eigenvalues. Suppose a square matrix is nonnegative; then, by Perron–Frobenius theory, it will be one among its eigenvalues. In this paper, Perron–Frobenius theory for adjacency matrix of graph with self-loops AGS will be explored. Specifically, it discusses the nontrivial existence of Perron–Frobenius eigenvalue and eigenvector pair in the matrix AGS−σnI, where σ denotes the number of self-loops. Also, Koolen–Moulton type bound for the energy of graph GS is explored. In addition, the existence of a graph with self-loops for every odd energy is proved.
ISSN:1024-123X
1563-5147
DOI:10.1155/2024/7056478