The critical node game
In this work, we introduce a game-theoretic model that assesses the cyber-security risk of cloud networks and informs security experts on the optimal security strategies. Our approach combines game theory, combinatorial optimization, and cyber-security and aims to minimize the unexpected network dis...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial optimization 2024-07, Vol.47 (5), Article 74 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we introduce a game-theoretic model that assesses the cyber-security risk of cloud networks and informs security experts on the optimal security strategies. Our approach combines game theory, combinatorial optimization, and cyber-security and aims to minimize the unexpected network disruptions caused by malicious cyber-attacks under uncertainty. Methodologically, we introduce the
the critical node game
, a simultaneous and non-cooperative attacker-defender game where each player solves a combinatorial optimization problem parametrized in the variables of the other player. Each player simultaneously commits to a defensive (or attacking) strategy with limited knowledge about the choices of their adversary. We provide a realistic model for the critical node game and propose an algorithm to compute its stable solutions,
i.e.
, its Nash equilibria. Practically, our approach enables security experts to assess the security posture of the cloud network and dynamically adapt the level of cyber-protection deployed on the network. We provide a detailed analysis of a real-world cloud network and demonstrate the efficacy of our approach through extensive computational tests. |
---|---|
ISSN: | 1382-6905 1573-2886 |
DOI: | 10.1007/s10878-024-01173-3 |