Inter-bead void reduction by crossing printing routes of fused filament fabricated composites

Purpose The use of continuous fiber-reinforced filaments improves the mechanical properties obtained with the fused filament fabrication (FFF) process. Yet, there is a lack of simulation tailored tools to assist in the design for additive manufacturing of continuous fiber composites. To build such m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rapid prototyping journal 2024-05, Vol.30 (5), p.1000-1010
Hauptverfasser: Marchal, Valentin, Zhang, Yicha, Lachat, Rémy, Labed, Nadia, Peyraut, François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose The use of continuous fiber-reinforced filaments improves the mechanical properties obtained with the fused filament fabrication (FFF) process. Yet, there is a lack of simulation tailored tools to assist in the design for additive manufacturing of continuous fiber composites. To build such models, a precise elastic model is required. As the porosity caused by interbead voids remains an important flaw of the process, this paper aims to build an elastic model integrating this aspect. Design/methodology/approach To study the amount of porosity, which could be a failure initiator, this study proposes a two step periodic homogenization method. The first step concerns the microscopic scale with a unit cell made of fiber and matrix. The second step is at the mesoscopic scale and combines the elastic material of the first step with the interbead voids. The void content has been set as a parameter of the model. The material models predicted with the periodic homogenization were compared with experimental results. Findings The comparison between periodic homogenization results and tensile test results shows a fair agreement between the experimental results and that of the numerical simulation, whatever the fibers’ orientations are. Moreover, a void content reduction has been observed by increasing the crossing angle from one layer to another. An empiric law giving the porosity according to this crossing angle was created. The model and the law can be further used for design evaluation and optimization of continuous fiber-reinforced FFF. Originality/value A new elastic model considering interbead voids and its variation with the crossing angle of the fibers has been built. It can be used in simulation tools to design high performance fused filament fabricated composite parts.
ISSN:1355-2546
1355-2546
1758-7670
DOI:10.1108/RPJ-02-2024-0077