FLEXIBLE: Forecasting Cellular Traffic by Leveraging Explicit Inductive Graph-Based Learning
From a telecommunication standpoint, the surge in users and services challenges next-generation networks with escalating traffic demands and limited resources. Accurate traffic prediction can offer network operators valuable insights into network conditions and suggest optimal allocation policies. R...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | From a telecommunication standpoint, the surge in users and services challenges next-generation networks with escalating traffic demands and limited resources. Accurate traffic prediction can offer network operators valuable insights into network conditions and suggest optimal allocation policies. Recently, spatio-temporal forecasting, employing Graph Neural Networks (GNNs), has emerged as a promising method for cellular traffic prediction. However, existing studies, inspired by road traffic forecasting formulations, overlook the dynamic deployment and removal of base stations, requiring the GNN-based forecaster to handle an evolving graph. This work introduces a novel inductive learning scheme and a generalizable GNN-based forecasting model that can process diverse graphs of cellular traffic with one-time training. We also demonstrate that this model can be easily leveraged by transfer learning with minimal effort, making it applicable to different areas. Experimental results show up to 9.8% performance improvement compared to the state-of-the-art, especially in rare-data settings with training data reduced to below 20%. |
---|---|
ISSN: | 2331-8422 |