Recognition Method of Abnormal Behavior of Marine Fish Swarm Based on In-Depth Learning Network Model
In order to solve the problem that individual coordinates are easily ignored in the localization of abnormal behavior of marine fish, resulting in low recognition accuracy, execution efficiency and high false alarm rate, this paper proposes a method of fish abnormal behavior recognition based on dee...
Gespeichert in:
Veröffentlicht in: | Journal of web engineering 2021-05, Vol.20 (3), p.575 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to solve the problem that individual coordinates are easily ignored in the localization of abnormal behavior of marine fish, resulting in low recognition accuracy, execution efficiency and high false alarm rate, this paper proposes a method of fish abnormal behavior recognition based on deep learning network model. Firstly, the shadow of the fish behavior data is removed, and the background image is subtracted from each frame image to get the gray image of the fish school. Then, the label watershed algorithm is used to identify the fish, and the coordinates of different individuals in the fish swarm are obtained. Combined with the experimental size constraints and the number of fish, and combined with the deep learning network model, the weak link of video tag monitoring of abnormal behavior of marine fish is analyzed. Finally, the multi instance learning method and dual flow network model are used to identify the anomaly of marine fish school. The experimental results show that the method has high recognition accuracy, low false alarm rate and high execution efficiency. This method can provide a practical reference for the related research in this field. |
---|---|
ISSN: | 1540-9589 1544-5976 |
DOI: | 10.13052/jwe1540-9589.2031 |