AMR-CNN: Abstract Meaning Representation with Convolution Neural Network for Toxic Content Detection
Recognizing the offensive, abusive, and profanity of multimedia content on the web has been a challenge to keep the web environment for user’s freedom of speech. As profanity filtering function has been developed and applied in text, audio, and video context in platforms such as social media, entert...
Gespeichert in:
Veröffentlicht in: | Journal of web engineering 2022-01, Vol.21 (3), p.677 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recognizing the offensive, abusive, and profanity of multimedia content on the web has been a challenge to keep the web environment for user’s freedom of speech. As profanity filtering function has been developed and applied in text, audio, and video context in platforms such as social media, entertainment, and education, the number of methods to trick the web-based application also has been increased and became a new issue to be solved. Compared to commonly developed toxic content detection systems that use lexicon and keyword-based detection, this work tries to embrace a different approach by the meaning of the sentence. Meaning representation is a way to grasp the meaning of linguistic input. This work proposed a data-driven approach utilizing Abstract meaning Representation to extract the meaning of the online text content into a convolutional neural network to detect level profanity. This work implements the proposed model in two kinds of datasets from the Offensive Language Identification Dataset and other datasets from the Offensive Hate dataset merged with the Twitter Sentiment Analysis dataset. The results indicate that the proposed model performs effectively, and can achieve a satisfactory accuracy in recognizing the level of online text content toxicity. |
---|---|
ISSN: | 1540-9589 1544-5976 |
DOI: | 10.13052/jwe1540-9589.2135 |