Image segmentation and classification for fission track analysis for nuclear forensics using U-net model

This study introduces a novel methodology for the detection and classification of fission track (FT) clusters in microscope images, employing state-of-the-art deep learning techniques for segmentation and classification (Elgad in nuclear forensics—fission track analysis—star segmentation and classif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of radioanalytical and nuclear chemistry 2024-05, Vol.333 (5), p.2321-2337
Hauptverfasser: Elgad, Noam, Babayew, Rami, Last, Mark, Weiss, Aryeh, Gilad, Erez, Levy, Galit Katarivas, Halevy, Itzhak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study introduces a novel methodology for the detection and classification of fission track (FT) clusters in microscope images, employing state-of-the-art deep learning techniques for segmentation and classification (Elgad in nuclear forensics—fission track analysis—star segmentation and classification using deep learning, Ben-Gurion University, 2022). The U-Net model, a fully convolutional network, was used to carry out the segmentation of various star-like patterns in both single-class and multi-class scenarios.
ISSN:0236-5731
1588-2780
DOI:10.1007/s10967-024-09461-2