Machine learning-based virtual sensors for reduced energy consumption in frost-free refrigerators

This study explores Machine Learning (ML) integration for household refrigerator efficiency. The ML approach allows to optimize defrost cycles, offering energy savings without complexity or cost escalation. The paper initially presents a State-of-the-Art of ML potential to improve functionality and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alcaraz, Alejandro, Ilare, Dennis, Mansutti, Alessandro, Cascini, Gaetano
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study explores Machine Learning (ML) integration for household refrigerator efficiency. The ML approach allows to optimize defrost cycles, offering energy savings without complexity or cost escalation. The paper initially presents a State-of-the-Art of ML potential to improve functionality and efficiency of refrigerators. Since frost is the cause of significant energy losses, a ML-based Virtual Sensor was developed to predict frost formation on the evaporator also in low -level refrigerators. The results show the environmental significance of ML in enhancing appliance efficiency.
ISSN:2732-527X
2732-527X
DOI:10.1017/pds.2024.193