ON THE N-POINT CORRELATION OF VAN DER CORPUT SEQUENCES

We derive an explicit formula for the N-point correlation $F_N(s)$ of the van der Corput sequence in base $2$ for all $N \in \mathbb {N}$ and $s \geq 0$ . The formula can be evaluated without explicit knowledge about the elements of the van der Corput sequence. This constitutes the first example of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2024-06, Vol.109 (3), p.471-475
1. Verfasser: WEIß, CHRISTIAN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 475
container_issue 3
container_start_page 471
container_title Bulletin of the Australian Mathematical Society
container_volume 109
creator WEIß, CHRISTIAN
description We derive an explicit formula for the N-point correlation $F_N(s)$ of the van der Corput sequence in base $2$ for all $N \in \mathbb {N}$ and $s \geq 0$ . The formula can be evaluated without explicit knowledge about the elements of the van der Corput sequence. This constitutes the first example of an exact closed-form expression of $F_N(s)$ for all $N \in \mathbb {N}$ and all $s \geq 0$ which does not require explicit knowledge about the involved sequence. Moreover, it can be immediately read off that $\lim _{N \to \infty } F_N(s)$ exists only for $0 \leq s \leq 1/2$ .
doi_str_mv 10.1017/S000497272300093X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3055296196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S000497272300093X</cupid><sourcerecordid>3055296196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-4448718f61d68bc60f1edb2e7226ee018853bc9c6ba68680d8618dacf9c604e43</originalsourceid><addsrcrecordid>eNp1UEtPg0AQ3hhNxOoP8EbiGd3ZhWE5Ety2JAQqD-ON8FhMG2vr0h789y5pEw_G08x8r8kMIfdAH4GC_1RQSt3AZz7jpgv42wWxwPc8B5DzS2JNtDPx1-RmHDdm8jwmLIJZapdLaafOKovT0o6yPJdJWMYGz-b2a5jazzKf4FVV2oV8qWQayeKWXA3Nx6juznVGqrkso6WTZIs4ChOnYxgcHNd1hQ9iQOhRtB3SAVTfMuUzhkpREMLjbRd02DYoUNBeIIi-6QYDUVe5fEYeTrl7vfs6qvFQb3ZH_WlW1pyaCwKEAI0KTqpO78ZRq6He6_W20d810Hp6T_3nPcbDz55m2-p1_65-o_93_QDGjmAV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055296196</pqid></control><display><type>article</type><title>ON THE N-POINT CORRELATION OF VAN DER CORPUT SEQUENCES</title><source>Cambridge University Press Journals Complete</source><creator>WEIß, CHRISTIAN</creator><creatorcontrib>WEIß, CHRISTIAN</creatorcontrib><description>We derive an explicit formula for the N-point correlation $F_N(s)$ of the van der Corput sequence in base $2$ for all $N \in \mathbb {N}$ and $s \geq 0$ . The formula can be evaluated without explicit knowledge about the elements of the van der Corput sequence. This constitutes the first example of an exact closed-form expression of $F_N(s)$ for all $N \in \mathbb {N}$ and all $s \geq 0$ which does not require explicit knowledge about the involved sequence. Moreover, it can be immediately read off that $\lim _{N \to \infty } F_N(s)$ exists only for $0 \leq s \leq 1/2$ .</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S000497272300093X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Explicit knowledge</subject><ispartof>Bulletin of the Australian Mathematical Society, 2024-06, Vol.109 (3), p.471-475</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-4448718f61d68bc60f1edb2e7226ee018853bc9c6ba68680d8618dacf9c604e43</cites><orcidid>0000-0002-3866-6874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S000497272300093X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>WEIß, CHRISTIAN</creatorcontrib><title>ON THE N-POINT CORRELATION OF VAN DER CORPUT SEQUENCES</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Aust. Math. Soc</addtitle><description>We derive an explicit formula for the N-point correlation $F_N(s)$ of the van der Corput sequence in base $2$ for all $N \in \mathbb {N}$ and $s \geq 0$ . The formula can be evaluated without explicit knowledge about the elements of the van der Corput sequence. This constitutes the first example of an exact closed-form expression of $F_N(s)$ for all $N \in \mathbb {N}$ and all $s \geq 0$ which does not require explicit knowledge about the involved sequence. Moreover, it can be immediately read off that $\lim _{N \to \infty } F_N(s)$ exists only for $0 \leq s \leq 1/2$ .</description><subject>Explicit knowledge</subject><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UEtPg0AQ3hhNxOoP8EbiGd3ZhWE5Ety2JAQqD-ON8FhMG2vr0h789y5pEw_G08x8r8kMIfdAH4GC_1RQSt3AZz7jpgv42wWxwPc8B5DzS2JNtDPx1-RmHDdm8jwmLIJZapdLaafOKovT0o6yPJdJWMYGz-b2a5jazzKf4FVV2oV8qWQayeKWXA3Nx6juznVGqrkso6WTZIs4ChOnYxgcHNd1hQ9iQOhRtB3SAVTfMuUzhkpREMLjbRd02DYoUNBeIIi-6QYDUVe5fEYeTrl7vfs6qvFQb3ZH_WlW1pyaCwKEAI0KTqpO78ZRq6He6_W20d810Hp6T_3nPcbDz55m2-p1_65-o_93_QDGjmAV</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>WEIß, CHRISTIAN</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3866-6874</orcidid></search><sort><creationdate>20240601</creationdate><title>ON THE N-POINT CORRELATION OF VAN DER CORPUT SEQUENCES</title><author>WEIß, CHRISTIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-4448718f61d68bc60f1edb2e7226ee018853bc9c6ba68680d8618dacf9c604e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Explicit knowledge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WEIß, CHRISTIAN</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WEIß, CHRISTIAN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON THE N-POINT CORRELATION OF VAN DER CORPUT SEQUENCES</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Aust. Math. Soc</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>109</volume><issue>3</issue><spage>471</spage><epage>475</epage><pages>471-475</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>We derive an explicit formula for the N-point correlation $F_N(s)$ of the van der Corput sequence in base $2$ for all $N \in \mathbb {N}$ and $s \geq 0$ . The formula can be evaluated without explicit knowledge about the elements of the van der Corput sequence. This constitutes the first example of an exact closed-form expression of $F_N(s)$ for all $N \in \mathbb {N}$ and all $s \geq 0$ which does not require explicit knowledge about the involved sequence. Moreover, it can be immediately read off that $\lim _{N \to \infty } F_N(s)$ exists only for $0 \leq s \leq 1/2$ .</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S000497272300093X</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3866-6874</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0004-9727
ispartof Bulletin of the Australian Mathematical Society, 2024-06, Vol.109 (3), p.471-475
issn 0004-9727
1755-1633
language eng
recordid cdi_proquest_journals_3055296196
source Cambridge University Press Journals Complete
subjects Explicit knowledge
title ON THE N-POINT CORRELATION OF VAN DER CORPUT SEQUENCES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A08%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20THE%20N-POINT%20CORRELATION%20OF%20VAN%20DER%20CORPUT%20SEQUENCES&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=WEI%C3%9F,%20CHRISTIAN&rft.date=2024-06-01&rft.volume=109&rft.issue=3&rft.spage=471&rft.epage=475&rft.pages=471-475&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S000497272300093X&rft_dat=%3Cproquest_cross%3E3055296196%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055296196&rft_id=info:pmid/&rft_cupid=10_1017_S000497272300093X&rfr_iscdi=true