ON THE N-POINT CORRELATION OF VAN DER CORPUT SEQUENCES

We derive an explicit formula for the N-point correlation $F_N(s)$ of the van der Corput sequence in base $2$ for all $N \in \mathbb {N}$ and $s \geq 0$ . The formula can be evaluated without explicit knowledge about the elements of the van der Corput sequence. This constitutes the first example of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2024-06, Vol.109 (3), p.471-475
1. Verfasser: WEIß, CHRISTIAN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive an explicit formula for the N-point correlation $F_N(s)$ of the van der Corput sequence in base $2$ for all $N \in \mathbb {N}$ and $s \geq 0$ . The formula can be evaluated without explicit knowledge about the elements of the van der Corput sequence. This constitutes the first example of an exact closed-form expression of $F_N(s)$ for all $N \in \mathbb {N}$ and all $s \geq 0$ which does not require explicit knowledge about the involved sequence. Moreover, it can be immediately read off that $\lim _{N \to \infty } F_N(s)$ exists only for $0 \leq s \leq 1/2$ .
ISSN:0004-9727
1755-1633
DOI:10.1017/S000497272300093X