ON THE N-POINT CORRELATION OF VAN DER CORPUT SEQUENCES
We derive an explicit formula for the N-point correlation $F_N(s)$ of the van der Corput sequence in base $2$ for all $N \in \mathbb {N}$ and $s \geq 0$ . The formula can be evaluated without explicit knowledge about the elements of the van der Corput sequence. This constitutes the first example of...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2024-06, Vol.109 (3), p.471-475 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We derive an explicit formula for the N-point correlation
$F_N(s)$
of the van der Corput sequence in base
$2$
for all
$N \in \mathbb {N}$
and
$s \geq 0$
. The formula can be evaluated without explicit knowledge about the elements of the van der Corput sequence. This constitutes the first example of an exact closed-form expression of
$F_N(s)$
for all
$N \in \mathbb {N}$
and all
$s \geq 0$
which does not require explicit knowledge about the involved sequence. Moreover, it can be immediately read off that
$\lim _{N \to \infty } F_N(s)$
exists only for
$0 \leq s \leq 1/2$
. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S000497272300093X |