Minimal monoids generating varieties with complex subvariety lattices
A variety is finitely universal if its lattice of subvarieties contains an isomorphic copy of every finite lattice. We show that the 6-element Brandt monoid generates a finitely universal variety of monoids and, by the previous results, it is the smallest generator for a monoid variety with this pro...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Edinburgh Mathematical Society 2024-05, Vol.67 (2), p.617-642 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A variety is finitely universal if its lattice of subvarieties contains an isomorphic copy of every finite lattice. We show that the 6-element Brandt monoid generates a finitely universal variety of monoids and, by the previous results, it is the smallest generator for a monoid variety with this property. It is also deduced that the join of two Cross varieties of monoids can be finitely universal. In particular, we exhibit a finitely universal variety of monoids with uncountably many subvarieties which is the join of two Cross varieties of monoids whose lattices of subvarieties are the 6-element and the 7-element chains, respectively. |
---|---|
ISSN: | 0013-0915 1464-3839 |
DOI: | 10.1017/S0013091524000178 |