Quantitative description of long-range order in the anisotropic spin-1/2 Heisenberg antiferromagnet on the square lattice
The quantitative description of long-range order remains a challenge in quantum many-body physics. We provide zero-temperature results from two complementary methods for the ground-state energy per site, the sublattice magnetization, the spin gap, and the transverse spin correlation length for the s...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Caci, Nils Hering, Dag-Björn Walther, Matthias R Schmidt, Kai P Wessel, Stefan Uhrig, Götz S |
description | The quantitative description of long-range order remains a challenge in quantum many-body physics. We provide zero-temperature results from two complementary methods for the ground-state energy per site, the sublattice magnetization, the spin gap, and the transverse spin correlation length for the spin-1/2 anisotropic quantum Heisenberg antiferromagnet on the square lattice. On the one hand, we use exact, large-scale quantum Monte Carlo (QMC) simulations. On the other hand, we use the semi-analytic approach based on continuous similarity transformations in terms of elementary magnon excitations. Our findings confirm the applicability and quantitative validity of both approaches along the full parameter axis from the Ising point to the symmetry-restoring phase transition at the Heisenberg point and further provide quantitative reference results in the thermodynamic limit. In addition, we analytically derive the relation between the dispersion and the correlation length at zero temperature in arbitrary dimension, and discuss improved second-moment QMC estimators. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3055210512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055210512</sourcerecordid><originalsourceid>FETCH-proquest_journals_30552105123</originalsourceid><addsrcrecordid>eNqNjEFKA0EQRZuAkKC5Q4HrwZ7utMleItkK7kM7qRkrTKomVTWCt1fRA7j6i_feX4RVyrltdpuUlmFtdo4xpsdtKiWvwufLXNnJq9MHwgmtU5qchEF6GIWHRisPCKInVCAGf0eoTCauMlEHNhE37UOCA5Ihv6EO8PPYo6pc6sDoIL-ZXeeqCGN1pw7vwk1fR8P1396G--f969OhmVSuM5ofzzIrf6NjjqWkNpY25f9ZXx3hTn8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055210512</pqid></control><display><type>article</type><title>Quantitative description of long-range order in the anisotropic spin-1/2 Heisenberg antiferromagnet on the square lattice</title><source>Free E- Journals</source><creator>Caci, Nils ; Hering, Dag-Björn ; Walther, Matthias R ; Schmidt, Kai P ; Wessel, Stefan ; Uhrig, Götz S</creator><creatorcontrib>Caci, Nils ; Hering, Dag-Björn ; Walther, Matthias R ; Schmidt, Kai P ; Wessel, Stefan ; Uhrig, Götz S</creatorcontrib><description>The quantitative description of long-range order remains a challenge in quantum many-body physics. We provide zero-temperature results from two complementary methods for the ground-state energy per site, the sublattice magnetization, the spin gap, and the transverse spin correlation length for the spin-1/2 anisotropic quantum Heisenberg antiferromagnet on the square lattice. On the one hand, we use exact, large-scale quantum Monte Carlo (QMC) simulations. On the other hand, we use the semi-analytic approach based on continuous similarity transformations in terms of elementary magnon excitations. Our findings confirm the applicability and quantitative validity of both approaches along the full parameter axis from the Ising point to the symmetry-restoring phase transition at the Heisenberg point and further provide quantitative reference results in the thermodynamic limit. In addition, we analytically derive the relation between the dispersion and the correlation length at zero temperature in arbitrary dimension, and discuss improved second-moment QMC estimators.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Antiferromagnetism ; Ising model ; Long range order ; Magnons ; Phase transitions</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Caci, Nils</creatorcontrib><creatorcontrib>Hering, Dag-Björn</creatorcontrib><creatorcontrib>Walther, Matthias R</creatorcontrib><creatorcontrib>Schmidt, Kai P</creatorcontrib><creatorcontrib>Wessel, Stefan</creatorcontrib><creatorcontrib>Uhrig, Götz S</creatorcontrib><title>Quantitative description of long-range order in the anisotropic spin-1/2 Heisenberg antiferromagnet on the square lattice</title><title>arXiv.org</title><description>The quantitative description of long-range order remains a challenge in quantum many-body physics. We provide zero-temperature results from two complementary methods for the ground-state energy per site, the sublattice magnetization, the spin gap, and the transverse spin correlation length for the spin-1/2 anisotropic quantum Heisenberg antiferromagnet on the square lattice. On the one hand, we use exact, large-scale quantum Monte Carlo (QMC) simulations. On the other hand, we use the semi-analytic approach based on continuous similarity transformations in terms of elementary magnon excitations. Our findings confirm the applicability and quantitative validity of both approaches along the full parameter axis from the Ising point to the symmetry-restoring phase transition at the Heisenberg point and further provide quantitative reference results in the thermodynamic limit. In addition, we analytically derive the relation between the dispersion and the correlation length at zero temperature in arbitrary dimension, and discuss improved second-moment QMC estimators.</description><subject>Antiferromagnetism</subject><subject>Ising model</subject><subject>Long range order</subject><subject>Magnons</subject><subject>Phase transitions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEFKA0EQRZuAkKC5Q4HrwZ7utMleItkK7kM7qRkrTKomVTWCt1fRA7j6i_feX4RVyrltdpuUlmFtdo4xpsdtKiWvwufLXNnJq9MHwgmtU5qchEF6GIWHRisPCKInVCAGf0eoTCauMlEHNhE37UOCA5Ihv6EO8PPYo6pc6sDoIL-ZXeeqCGN1pw7vwk1fR8P1396G--f969OhmVSuM5ofzzIrf6NjjqWkNpY25f9ZXx3hTn8</recordid><startdate>20240514</startdate><enddate>20240514</enddate><creator>Caci, Nils</creator><creator>Hering, Dag-Björn</creator><creator>Walther, Matthias R</creator><creator>Schmidt, Kai P</creator><creator>Wessel, Stefan</creator><creator>Uhrig, Götz S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240514</creationdate><title>Quantitative description of long-range order in the anisotropic spin-1/2 Heisenberg antiferromagnet on the square lattice</title><author>Caci, Nils ; Hering, Dag-Björn ; Walther, Matthias R ; Schmidt, Kai P ; Wessel, Stefan ; Uhrig, Götz S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30552105123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antiferromagnetism</topic><topic>Ising model</topic><topic>Long range order</topic><topic>Magnons</topic><topic>Phase transitions</topic><toplevel>online_resources</toplevel><creatorcontrib>Caci, Nils</creatorcontrib><creatorcontrib>Hering, Dag-Björn</creatorcontrib><creatorcontrib>Walther, Matthias R</creatorcontrib><creatorcontrib>Schmidt, Kai P</creatorcontrib><creatorcontrib>Wessel, Stefan</creatorcontrib><creatorcontrib>Uhrig, Götz S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caci, Nils</au><au>Hering, Dag-Björn</au><au>Walther, Matthias R</au><au>Schmidt, Kai P</au><au>Wessel, Stefan</au><au>Uhrig, Götz S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Quantitative description of long-range order in the anisotropic spin-1/2 Heisenberg antiferromagnet on the square lattice</atitle><jtitle>arXiv.org</jtitle><date>2024-05-14</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The quantitative description of long-range order remains a challenge in quantum many-body physics. We provide zero-temperature results from two complementary methods for the ground-state energy per site, the sublattice magnetization, the spin gap, and the transverse spin correlation length for the spin-1/2 anisotropic quantum Heisenberg antiferromagnet on the square lattice. On the one hand, we use exact, large-scale quantum Monte Carlo (QMC) simulations. On the other hand, we use the semi-analytic approach based on continuous similarity transformations in terms of elementary magnon excitations. Our findings confirm the applicability and quantitative validity of both approaches along the full parameter axis from the Ising point to the symmetry-restoring phase transition at the Heisenberg point and further provide quantitative reference results in the thermodynamic limit. In addition, we analytically derive the relation between the dispersion and the correlation length at zero temperature in arbitrary dimension, and discuss improved second-moment QMC estimators.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3055210512 |
source | Free E- Journals |
subjects | Antiferromagnetism Ising model Long range order Magnons Phase transitions |
title | Quantitative description of long-range order in the anisotropic spin-1/2 Heisenberg antiferromagnet on the square lattice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Quantitative%20description%20of%20long-range%20order%20in%20the%20anisotropic%20spin-1/2%20Heisenberg%20antiferromagnet%20on%20the%20square%20lattice&rft.jtitle=arXiv.org&rft.au=Caci,%20Nils&rft.date=2024-05-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3055210512%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055210512&rft_id=info:pmid/&rfr_iscdi=true |