Quantitative description of long-range order in the anisotropic spin-1/2 Heisenberg antiferromagnet on the square lattice

The quantitative description of long-range order remains a challenge in quantum many-body physics. We provide zero-temperature results from two complementary methods for the ground-state energy per site, the sublattice magnetization, the spin gap, and the transverse spin correlation length for the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Caci, Nils, Hering, Dag-Björn, Walther, Matthias R, Schmidt, Kai P, Wessel, Stefan, Uhrig, Götz S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The quantitative description of long-range order remains a challenge in quantum many-body physics. We provide zero-temperature results from two complementary methods for the ground-state energy per site, the sublattice magnetization, the spin gap, and the transverse spin correlation length for the spin-1/2 anisotropic quantum Heisenberg antiferromagnet on the square lattice. On the one hand, we use exact, large-scale quantum Monte Carlo (QMC) simulations. On the other hand, we use the semi-analytic approach based on continuous similarity transformations in terms of elementary magnon excitations. Our findings confirm the applicability and quantitative validity of both approaches along the full parameter axis from the Ising point to the symmetry-restoring phase transition at the Heisenberg point and further provide quantitative reference results in the thermodynamic limit. In addition, we analytically derive the relation between the dispersion and the correlation length at zero temperature in arbitrary dimension, and discuss improved second-moment QMC estimators.
ISSN:2331-8422