Total Variation Distance for Product Distributions is \(\#\mathsf{P}\)-Complete
We show that computing the total variation distance between two product distributions is \(\#\mathsf{P}\)-complete. This is in stark contrast with other distance measures such as Kullback-Leibler, Chi-square, and Hellinger, which tensorize over the marginals leading to efficient algorithms.
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that computing the total variation distance between two product distributions is \(\#\mathsf{P}\)-complete. This is in stark contrast with other distance measures such as Kullback-Leibler, Chi-square, and Hellinger, which tensorize over the marginals leading to efficient algorithms. |
---|---|
ISSN: | 2331-8422 |