Isoperiodic families of Poncelet polygons inscribed in a circle and circumscribed about conics from a confocal pencil

Poncelet polygons inscribed in a circle and circumscribed about conics from a confocal family naturally arise in the analysis of the numerical range and Blaschke products. We examine the behaviour of such polygons when the inscribed conic varies through a confocal pencil and discover cases when each...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2024-06, Vol.218 (3), Article 81
Hauptverfasser: Dragović, Vladimir, Radnović, Milena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poncelet polygons inscribed in a circle and circumscribed about conics from a confocal family naturally arise in the analysis of the numerical range and Blaschke products. We examine the behaviour of such polygons when the inscribed conic varies through a confocal pencil and discover cases when each conic from the confocal family is inscribed in an n -polygon, which is inscribed in the circle, with the same n . Complete geometric characterization of such cases for n ∈ { 4 , 6 } is given and proved that this cannot happen for other values of n . We establish a relationship of such families of Poncelet quadrangles and hexagons to solutions of a Painlevé VI equation.
ISSN:0046-5755
1572-9168
DOI:10.1007/s10711-024-00929-9