Frozen 1‐RSB structure of the symmetric Ising perceptron

We prove, under an assumption on the critical points of a real‐valued function, that the symmetric Ising perceptron exhibits the ‘frozen 1‐RSB’ structure conjectured by Krauth and Mézard in the physics literature; that is, typical solutions of the model lie in clusters of vanishing entropy density....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2024-07, Vol.64 (4), p.856-877
Hauptverfasser: Perkins, Will, Xu, Changji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 877
container_issue 4
container_start_page 856
container_title Random structures & algorithms
container_volume 64
creator Perkins, Will
Xu, Changji
description We prove, under an assumption on the critical points of a real‐valued function, that the symmetric Ising perceptron exhibits the ‘frozen 1‐RSB’ structure conjectured by Krauth and Mézard in the physics literature; that is, typical solutions of the model lie in clusters of vanishing entropy density. Moreover, we prove this in a very strong form conjectured by Huang, Wong, and Kabashima: a typical solution of the model is isolated with high probability and the Hamming distance to all other solutions is linear in the dimension. The frozen 1‐RSB scenario is part of a recent and intriguing explanation of the performance of learning algorithms by Baldassi, Ingrosso, Lucibello, Saglietti, and Zecchina. We prove this structural result by comparing the symmetric Ising perceptron model to a planted model and proving a comparison result between the two models. Our main technical tool towards this comparison is an inductive argument for the concentration of the logarithm of number of solutions in the model.
doi_str_mv 10.1002/rsa.21202
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3054799659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054799659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2572-ec5fb1b09119e24d789c04b20f3d37fb27d44e3b3b74d04d81fa0e9a107bb40f3</originalsourceid><addsrcrecordid>eNp10L9OwzAQBnALgUQpDLyBJSaGtOc_wTFbqVqoVAmphdmKnQukapNgJ0Jl4hF4Rp6ElLAy3Q2_7076CLlkMGIAfOxDOuKMAz8iAwY6ibhkyfFhlzzSieCn5CyEDQAowcWA3M599YElZd-fX6v1HQ2Nb13TeqRVTptXpGG_22HjC0cXoShfaI3eYd34qjwnJ3m6DXjxN4fkeT57mj5Ey8f7xXSyjByPFY_QxbllFjRjGrnMVKIdSMshF5lQueUqkxKFFVbJDGSWsDwF1CkDZa3s1JBc9XdrX721GBqzqVpfdi-NgFgqrW9i3anrXjlfheAxN7UvdqnfGwbmUI3pqjG_1XR23Nv3Yov7_6FZrSd94gdRDmT3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054799659</pqid></control><display><type>article</type><title>Frozen 1‐RSB structure of the symmetric Ising perceptron</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Perkins, Will ; Xu, Changji</creator><creatorcontrib>Perkins, Will ; Xu, Changji</creatorcontrib><description>We prove, under an assumption on the critical points of a real‐valued function, that the symmetric Ising perceptron exhibits the ‘frozen 1‐RSB’ structure conjectured by Krauth and Mézard in the physics literature; that is, typical solutions of the model lie in clusters of vanishing entropy density. Moreover, we prove this in a very strong form conjectured by Huang, Wong, and Kabashima: a typical solution of the model is isolated with high probability and the Hamming distance to all other solutions is linear in the dimension. The frozen 1‐RSB scenario is part of a recent and intriguing explanation of the performance of learning algorithms by Baldassi, Ingrosso, Lucibello, Saglietti, and Zecchina. We prove this structural result by comparing the symmetric Ising perceptron model to a planted model and proving a comparison result between the two models. Our main technical tool towards this comparison is an inductive argument for the concentration of the logarithm of number of solutions in the model.</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.21202</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Critical point ; frozen solutions ; Ising model ; learning algorithms ; Machine learning ; perceptron ; planted model ; solution space</subject><ispartof>Random structures &amp; algorithms, 2024-07, Vol.64 (4), p.856-877</ispartof><rights>2023 Wiley Periodicals LLC</rights><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2572-ec5fb1b09119e24d789c04b20f3d37fb27d44e3b3b74d04d81fa0e9a107bb40f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frsa.21202$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frsa.21202$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Perkins, Will</creatorcontrib><creatorcontrib>Xu, Changji</creatorcontrib><title>Frozen 1‐RSB structure of the symmetric Ising perceptron</title><title>Random structures &amp; algorithms</title><description>We prove, under an assumption on the critical points of a real‐valued function, that the symmetric Ising perceptron exhibits the ‘frozen 1‐RSB’ structure conjectured by Krauth and Mézard in the physics literature; that is, typical solutions of the model lie in clusters of vanishing entropy density. Moreover, we prove this in a very strong form conjectured by Huang, Wong, and Kabashima: a typical solution of the model is isolated with high probability and the Hamming distance to all other solutions is linear in the dimension. The frozen 1‐RSB scenario is part of a recent and intriguing explanation of the performance of learning algorithms by Baldassi, Ingrosso, Lucibello, Saglietti, and Zecchina. We prove this structural result by comparing the symmetric Ising perceptron model to a planted model and proving a comparison result between the two models. Our main technical tool towards this comparison is an inductive argument for the concentration of the logarithm of number of solutions in the model.</description><subject>Algorithms</subject><subject>Critical point</subject><subject>frozen solutions</subject><subject>Ising model</subject><subject>learning algorithms</subject><subject>Machine learning</subject><subject>perceptron</subject><subject>planted model</subject><subject>solution space</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10L9OwzAQBnALgUQpDLyBJSaGtOc_wTFbqVqoVAmphdmKnQukapNgJ0Jl4hF4Rp6ElLAy3Q2_7076CLlkMGIAfOxDOuKMAz8iAwY6ibhkyfFhlzzSieCn5CyEDQAowcWA3M599YElZd-fX6v1HQ2Nb13TeqRVTptXpGG_22HjC0cXoShfaI3eYd34qjwnJ3m6DXjxN4fkeT57mj5Ey8f7xXSyjByPFY_QxbllFjRjGrnMVKIdSMshF5lQueUqkxKFFVbJDGSWsDwF1CkDZa3s1JBc9XdrX721GBqzqVpfdi-NgFgqrW9i3anrXjlfheAxN7UvdqnfGwbmUI3pqjG_1XR23Nv3Yov7_6FZrSd94gdRDmT3</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Perkins, Will</creator><creator>Xu, Changji</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202407</creationdate><title>Frozen 1‐RSB structure of the symmetric Ising perceptron</title><author>Perkins, Will ; Xu, Changji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2572-ec5fb1b09119e24d789c04b20f3d37fb27d44e3b3b74d04d81fa0e9a107bb40f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Critical point</topic><topic>frozen solutions</topic><topic>Ising model</topic><topic>learning algorithms</topic><topic>Machine learning</topic><topic>perceptron</topic><topic>planted model</topic><topic>solution space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perkins, Will</creatorcontrib><creatorcontrib>Xu, Changji</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Random structures &amp; algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perkins, Will</au><au>Xu, Changji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frozen 1‐RSB structure of the symmetric Ising perceptron</atitle><jtitle>Random structures &amp; algorithms</jtitle><date>2024-07</date><risdate>2024</risdate><volume>64</volume><issue>4</issue><spage>856</spage><epage>877</epage><pages>856-877</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>We prove, under an assumption on the critical points of a real‐valued function, that the symmetric Ising perceptron exhibits the ‘frozen 1‐RSB’ structure conjectured by Krauth and Mézard in the physics literature; that is, typical solutions of the model lie in clusters of vanishing entropy density. Moreover, we prove this in a very strong form conjectured by Huang, Wong, and Kabashima: a typical solution of the model is isolated with high probability and the Hamming distance to all other solutions is linear in the dimension. The frozen 1‐RSB scenario is part of a recent and intriguing explanation of the performance of learning algorithms by Baldassi, Ingrosso, Lucibello, Saglietti, and Zecchina. We prove this structural result by comparing the symmetric Ising perceptron model to a planted model and proving a comparison result between the two models. Our main technical tool towards this comparison is an inductive argument for the concentration of the logarithm of number of solutions in the model.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/rsa.21202</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1042-9832
ispartof Random structures & algorithms, 2024-07, Vol.64 (4), p.856-877
issn 1042-9832
1098-2418
language eng
recordid cdi_proquest_journals_3054799659
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Critical point
frozen solutions
Ising model
learning algorithms
Machine learning
perceptron
planted model
solution space
title Frozen 1‐RSB structure of the symmetric Ising perceptron
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A54%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frozen%201%E2%80%90RSB%20structure%20of%20the%20symmetric%20Ising%20perceptron&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Perkins,%20Will&rft.date=2024-07&rft.volume=64&rft.issue=4&rft.spage=856&rft.epage=877&rft.pages=856-877&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.21202&rft_dat=%3Cproquest_cross%3E3054799659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054799659&rft_id=info:pmid/&rfr_iscdi=true