Frozen 1‐RSB structure of the symmetric Ising perceptron
We prove, under an assumption on the critical points of a real‐valued function, that the symmetric Ising perceptron exhibits the ‘frozen 1‐RSB’ structure conjectured by Krauth and Mézard in the physics literature; that is, typical solutions of the model lie in clusters of vanishing entropy density....
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2024-07, Vol.64 (4), p.856-877 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 877 |
---|---|
container_issue | 4 |
container_start_page | 856 |
container_title | Random structures & algorithms |
container_volume | 64 |
creator | Perkins, Will Xu, Changji |
description | We prove, under an assumption on the critical points of a real‐valued function, that the symmetric Ising perceptron exhibits the ‘frozen 1‐RSB’ structure conjectured by Krauth and Mézard in the physics literature; that is, typical solutions of the model lie in clusters of vanishing entropy density. Moreover, we prove this in a very strong form conjectured by Huang, Wong, and Kabashima: a typical solution of the model is isolated with high probability and the Hamming distance to all other solutions is linear in the dimension. The frozen 1‐RSB scenario is part of a recent and intriguing explanation of the performance of learning algorithms by Baldassi, Ingrosso, Lucibello, Saglietti, and Zecchina. We prove this structural result by comparing the symmetric Ising perceptron model to a planted model and proving a comparison result between the two models. Our main technical tool towards this comparison is an inductive argument for the concentration of the logarithm of number of solutions in the model. |
doi_str_mv | 10.1002/rsa.21202 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3054799659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054799659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2572-ec5fb1b09119e24d789c04b20f3d37fb27d44e3b3b74d04d81fa0e9a107bb40f3</originalsourceid><addsrcrecordid>eNp10L9OwzAQBnALgUQpDLyBJSaGtOc_wTFbqVqoVAmphdmKnQukapNgJ0Jl4hF4Rp6ElLAy3Q2_7076CLlkMGIAfOxDOuKMAz8iAwY6ibhkyfFhlzzSieCn5CyEDQAowcWA3M599YElZd-fX6v1HQ2Nb13TeqRVTptXpGG_22HjC0cXoShfaI3eYd34qjwnJ3m6DXjxN4fkeT57mj5Ey8f7xXSyjByPFY_QxbllFjRjGrnMVKIdSMshF5lQueUqkxKFFVbJDGSWsDwF1CkDZa3s1JBc9XdrX721GBqzqVpfdi-NgFgqrW9i3anrXjlfheAxN7UvdqnfGwbmUI3pqjG_1XR23Nv3Yov7_6FZrSd94gdRDmT3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054799659</pqid></control><display><type>article</type><title>Frozen 1‐RSB structure of the symmetric Ising perceptron</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Perkins, Will ; Xu, Changji</creator><creatorcontrib>Perkins, Will ; Xu, Changji</creatorcontrib><description>We prove, under an assumption on the critical points of a real‐valued function, that the symmetric Ising perceptron exhibits the ‘frozen 1‐RSB’ structure conjectured by Krauth and Mézard in the physics literature; that is, typical solutions of the model lie in clusters of vanishing entropy density. Moreover, we prove this in a very strong form conjectured by Huang, Wong, and Kabashima: a typical solution of the model is isolated with high probability and the Hamming distance to all other solutions is linear in the dimension. The frozen 1‐RSB scenario is part of a recent and intriguing explanation of the performance of learning algorithms by Baldassi, Ingrosso, Lucibello, Saglietti, and Zecchina. We prove this structural result by comparing the symmetric Ising perceptron model to a planted model and proving a comparison result between the two models. Our main technical tool towards this comparison is an inductive argument for the concentration of the logarithm of number of solutions in the model.</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.21202</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Critical point ; frozen solutions ; Ising model ; learning algorithms ; Machine learning ; perceptron ; planted model ; solution space</subject><ispartof>Random structures & algorithms, 2024-07, Vol.64 (4), p.856-877</ispartof><rights>2023 Wiley Periodicals LLC</rights><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2572-ec5fb1b09119e24d789c04b20f3d37fb27d44e3b3b74d04d81fa0e9a107bb40f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frsa.21202$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frsa.21202$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Perkins, Will</creatorcontrib><creatorcontrib>Xu, Changji</creatorcontrib><title>Frozen 1‐RSB structure of the symmetric Ising perceptron</title><title>Random structures & algorithms</title><description>We prove, under an assumption on the critical points of a real‐valued function, that the symmetric Ising perceptron exhibits the ‘frozen 1‐RSB’ structure conjectured by Krauth and Mézard in the physics literature; that is, typical solutions of the model lie in clusters of vanishing entropy density. Moreover, we prove this in a very strong form conjectured by Huang, Wong, and Kabashima: a typical solution of the model is isolated with high probability and the Hamming distance to all other solutions is linear in the dimension. The frozen 1‐RSB scenario is part of a recent and intriguing explanation of the performance of learning algorithms by Baldassi, Ingrosso, Lucibello, Saglietti, and Zecchina. We prove this structural result by comparing the symmetric Ising perceptron model to a planted model and proving a comparison result between the two models. Our main technical tool towards this comparison is an inductive argument for the concentration of the logarithm of number of solutions in the model.</description><subject>Algorithms</subject><subject>Critical point</subject><subject>frozen solutions</subject><subject>Ising model</subject><subject>learning algorithms</subject><subject>Machine learning</subject><subject>perceptron</subject><subject>planted model</subject><subject>solution space</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10L9OwzAQBnALgUQpDLyBJSaGtOc_wTFbqVqoVAmphdmKnQukapNgJ0Jl4hF4Rp6ElLAy3Q2_7076CLlkMGIAfOxDOuKMAz8iAwY6ibhkyfFhlzzSieCn5CyEDQAowcWA3M599YElZd-fX6v1HQ2Nb13TeqRVTptXpGG_22HjC0cXoShfaI3eYd34qjwnJ3m6DXjxN4fkeT57mj5Ey8f7xXSyjByPFY_QxbllFjRjGrnMVKIdSMshF5lQueUqkxKFFVbJDGSWsDwF1CkDZa3s1JBc9XdrX721GBqzqVpfdi-NgFgqrW9i3anrXjlfheAxN7UvdqnfGwbmUI3pqjG_1XR23Nv3Yov7_6FZrSd94gdRDmT3</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Perkins, Will</creator><creator>Xu, Changji</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202407</creationdate><title>Frozen 1‐RSB structure of the symmetric Ising perceptron</title><author>Perkins, Will ; Xu, Changji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2572-ec5fb1b09119e24d789c04b20f3d37fb27d44e3b3b74d04d81fa0e9a107bb40f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Critical point</topic><topic>frozen solutions</topic><topic>Ising model</topic><topic>learning algorithms</topic><topic>Machine learning</topic><topic>perceptron</topic><topic>planted model</topic><topic>solution space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perkins, Will</creatorcontrib><creatorcontrib>Xu, Changji</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Random structures & algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perkins, Will</au><au>Xu, Changji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frozen 1‐RSB structure of the symmetric Ising perceptron</atitle><jtitle>Random structures & algorithms</jtitle><date>2024-07</date><risdate>2024</risdate><volume>64</volume><issue>4</issue><spage>856</spage><epage>877</epage><pages>856-877</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>We prove, under an assumption on the critical points of a real‐valued function, that the symmetric Ising perceptron exhibits the ‘frozen 1‐RSB’ structure conjectured by Krauth and Mézard in the physics literature; that is, typical solutions of the model lie in clusters of vanishing entropy density. Moreover, we prove this in a very strong form conjectured by Huang, Wong, and Kabashima: a typical solution of the model is isolated with high probability and the Hamming distance to all other solutions is linear in the dimension. The frozen 1‐RSB scenario is part of a recent and intriguing explanation of the performance of learning algorithms by Baldassi, Ingrosso, Lucibello, Saglietti, and Zecchina. We prove this structural result by comparing the symmetric Ising perceptron model to a planted model and proving a comparison result between the two models. Our main technical tool towards this comparison is an inductive argument for the concentration of the logarithm of number of solutions in the model.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/rsa.21202</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1042-9832 |
ispartof | Random structures & algorithms, 2024-07, Vol.64 (4), p.856-877 |
issn | 1042-9832 1098-2418 |
language | eng |
recordid | cdi_proquest_journals_3054799659 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Critical point frozen solutions Ising model learning algorithms Machine learning perceptron planted model solution space |
title | Frozen 1‐RSB structure of the symmetric Ising perceptron |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A54%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frozen%201%E2%80%90RSB%20structure%20of%20the%20symmetric%20Ising%20perceptron&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Perkins,%20Will&rft.date=2024-07&rft.volume=64&rft.issue=4&rft.spage=856&rft.epage=877&rft.pages=856-877&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.21202&rft_dat=%3Cproquest_cross%3E3054799659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054799659&rft_id=info:pmid/&rfr_iscdi=true |