Frozen 1‐RSB structure of the symmetric Ising perceptron
We prove, under an assumption on the critical points of a real‐valued function, that the symmetric Ising perceptron exhibits the ‘frozen 1‐RSB’ structure conjectured by Krauth and Mézard in the physics literature; that is, typical solutions of the model lie in clusters of vanishing entropy density....
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2024-07, Vol.64 (4), p.856-877 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove, under an assumption on the critical points of a real‐valued function, that the symmetric Ising perceptron exhibits the ‘frozen 1‐RSB’ structure conjectured by Krauth and Mézard in the physics literature; that is, typical solutions of the model lie in clusters of vanishing entropy density. Moreover, we prove this in a very strong form conjectured by Huang, Wong, and Kabashima: a typical solution of the model is isolated with high probability and the Hamming distance to all other solutions is linear in the dimension. The frozen 1‐RSB scenario is part of a recent and intriguing explanation of the performance of learning algorithms by Baldassi, Ingrosso, Lucibello, Saglietti, and Zecchina. We prove this structural result by comparing the symmetric Ising perceptron model to a planted model and proving a comparison result between the two models. Our main technical tool towards this comparison is an inductive argument for the concentration of the logarithm of number of solutions in the model. |
---|---|
ISSN: | 1042-9832 1098-2418 |
DOI: | 10.1002/rsa.21202 |