Learning from Repeated Trials without Feedback: Can Collective Intelligence Outperform the Best Members?

Both group process studies and collective intelligence studies are concerned with “which of the crowds and the best members perform better.” This can be seen as a matter of democracy versus dictatorship. Having evidence of the growth potential of crowds and experts can be useful in making correct pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2024/04/01, Vol.E107.D(4), pp.443-450
1. Verfasser: ARIMA, Yoshiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Both group process studies and collective intelligence studies are concerned with “which of the crowds and the best members perform better.” This can be seen as a matter of democracy versus dictatorship. Having evidence of the growth potential of crowds and experts can be useful in making correct predictions and can benefit humanity. In the collective intelligence experimental paradigm, experts' or best members ability is compared with the accuracy of the crowd average. In this research (n =620), using repeated trials of simple tasks, we compare the correct answer of a class average (index of collective intelligence) and the best member (the one whose answer was closest to the correct answer). The results indicated that, for the cognition task, collective intelligence improved to the level of the best member through repeated trials without feedback; however, it depended on the ability of the best members for the prediction task. The present study suggested that best members' superiority over crowds for the prediction task on the premise of being free from social influence. However, machine learning results suggests that the best members among us cannot be easily found beforehand because they appear through repeated trials.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2023IHP0001