Quasi-invariant lifts of completely positive maps for groupoid actions
Let \(G\) be a locally compact, \(\sigma\)-compact, Hausdorff groupoid and \(A\) be a separable, \(C_0(G^{(0)})\)-nuclear, \(G\)-\(C^*\)-algebra. We prove the existence of quasi-invariant, completely positive and contractive lifts for equivariant, completely positive and contractive maps from \(A\)...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(G\) be a locally compact, \(\sigma\)-compact, Hausdorff groupoid and \(A\) be a separable, \(C_0(G^{(0)})\)-nuclear, \(G\)-\(C^*\)-algebra. We prove the existence of quasi-invariant, completely positive and contractive lifts for equivariant, completely positive and contractive maps from \(A\) into a separable, quotient \(C^*\)-algebra. Along the way, we construct the Busby invariant for \(G\)-actions. |
---|---|
ISSN: | 2331-8422 |