Quasi-invariant lifts of completely positive maps for groupoid actions

Let \(G\) be a locally compact, \(\sigma\)-compact, Hausdorff groupoid and \(A\) be a separable, \(C_0(G^{(0)})\)-nuclear, \(G\)-\(C^*\)-algebra. We prove the existence of quasi-invariant, completely positive and contractive lifts for equivariant, completely positive and contractive maps from \(A\)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Bhattacharjee, Suvrajit, ough, Marzieh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(G\) be a locally compact, \(\sigma\)-compact, Hausdorff groupoid and \(A\) be a separable, \(C_0(G^{(0)})\)-nuclear, \(G\)-\(C^*\)-algebra. We prove the existence of quasi-invariant, completely positive and contractive lifts for equivariant, completely positive and contractive maps from \(A\) into a separable, quotient \(C^*\)-algebra. Along the way, we construct the Busby invariant for \(G\)-actions.
ISSN:2331-8422