Equivariant Morse index of min–max G-invariant minimal hypersurfaces

For a closed Riemannian manifold M n + 1 with a compact Lie group G acting as isometries, the equivariant min–max theory gives the existence and the potential abundance of minimal G -invariant hypersurfaces provided 3 ≤ codim ( G · p ) ≤ 7 for all p ∈ M . In this paper, we show a compactness theorem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2024-06, Vol.389 (2), p.1599-1637
1. Verfasser: Wang, Tongrui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1637
container_issue 2
container_start_page 1599
container_title Mathematische annalen
container_volume 389
creator Wang, Tongrui
description For a closed Riemannian manifold M n + 1 with a compact Lie group G acting as isometries, the equivariant min–max theory gives the existence and the potential abundance of minimal G -invariant hypersurfaces provided 3 ≤ codim ( G · p ) ≤ 7 for all p ∈ M . In this paper, we show a compactness theorem for these min–max minimal G -hypersurfaces and construct a G -invariant Jacobi field on the limit. Combining with an equivariant bumpy metrics theorem, we obtain a C G ∞ -generic finiteness result for min–max G -hypersurfaces with area uniformly bounded. As a main application, we further generalize the Morse index estimates for min–max minimal hypersurfaces to the equivariant setting. Namely, the closed G -invariant minimal hypersurface Σ ⊂ M constructed by the equivariant min–max on a k -dimensional homotopy class can be chosen to satisfy Index G ( Σ ) ≤ k .
doi_str_mv 10.1007/s00208-023-02681-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3054462245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054462245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-eda9bfe446a5dfed298366a75378a06ecf13d0890e6223ddb714de0546e5652f3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaRWBvGv0mWqCoFqYgNrC03HkOqNmntBrVdcQduyEkwBMSOxWikme-9GT1CzhlcMoD8KgJwKChwkUoXjO4PyIBJwSkrID8kg7RXVBWCHZOTGOcAIADUgNyM1139akNtm01234aIWd043Gatz5Z18_H2vrTbbELr5hdK03ppF9nLboUhdsHbCuMpOfJ2EfHspw_J0834cXRLpw-Tu9H1lFaClRuKzpYzj1Jqq5xHx8tCaG1zJfLCgsbKM-GgKAE158K5Wc6kQ1BSo9KKezEkF73vKrTrDuPGzNsuNOmkEQmTSSZVonhPVaGNMaA3q5B-DjvDwHzlZfq8TMrLfOdl9kkkelFMcPOM4c_6H9UnsD1vQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054462245</pqid></control><display><type>article</type><title>Equivariant Morse index of min–max G-invariant minimal hypersurfaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Tongrui</creator><creatorcontrib>Wang, Tongrui</creatorcontrib><description>For a closed Riemannian manifold M n + 1 with a compact Lie group G acting as isometries, the equivariant min–max theory gives the existence and the potential abundance of minimal G -invariant hypersurfaces provided 3 ≤ codim ( G · p ) ≤ 7 for all p ∈ M . In this paper, we show a compactness theorem for these min–max minimal G -hypersurfaces and construct a G -invariant Jacobi field on the limit. Combining with an equivariant bumpy metrics theorem, we obtain a C G ∞ -generic finiteness result for min–max G -hypersurfaces with area uniformly bounded. As a main application, we further generalize the Morse index estimates for min–max minimal hypersurfaces to the equivariant setting. Namely, the closed G -invariant minimal hypersurface Σ ⊂ M constructed by the equivariant min–max on a k -dimensional homotopy class can be chosen to satisfy Index G ( Σ ) ≤ k .</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-023-02681-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Hyperspaces ; Invariants ; Lie groups ; Mathematics ; Mathematics and Statistics ; Riemann manifold ; Theorems</subject><ispartof>Mathematische annalen, 2024-06, Vol.389 (2), p.1599-1637</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-eda9bfe446a5dfed298366a75378a06ecf13d0890e6223ddb714de0546e5652f3</citedby><cites>FETCH-LOGICAL-c319t-eda9bfe446a5dfed298366a75378a06ecf13d0890e6223ddb714de0546e5652f3</cites><orcidid>0000-0001-7608-2186</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-023-02681-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-023-02681-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Wang, Tongrui</creatorcontrib><title>Equivariant Morse index of min–max G-invariant minimal hypersurfaces</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>For a closed Riemannian manifold M n + 1 with a compact Lie group G acting as isometries, the equivariant min–max theory gives the existence and the potential abundance of minimal G -invariant hypersurfaces provided 3 ≤ codim ( G · p ) ≤ 7 for all p ∈ M . In this paper, we show a compactness theorem for these min–max minimal G -hypersurfaces and construct a G -invariant Jacobi field on the limit. Combining with an equivariant bumpy metrics theorem, we obtain a C G ∞ -generic finiteness result for min–max G -hypersurfaces with area uniformly bounded. As a main application, we further generalize the Morse index estimates for min–max minimal hypersurfaces to the equivariant setting. Namely, the closed G -invariant minimal hypersurface Σ ⊂ M constructed by the equivariant min–max on a k -dimensional homotopy class can be chosen to satisfy Index G ( Σ ) ≤ k .</description><subject>Hyperspaces</subject><subject>Invariants</subject><subject>Lie groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Riemann manifold</subject><subject>Theorems</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaRWBvGv0mWqCoFqYgNrC03HkOqNmntBrVdcQduyEkwBMSOxWikme-9GT1CzhlcMoD8KgJwKChwkUoXjO4PyIBJwSkrID8kg7RXVBWCHZOTGOcAIADUgNyM1139akNtm01234aIWd043Gatz5Z18_H2vrTbbELr5hdK03ppF9nLboUhdsHbCuMpOfJ2EfHspw_J0834cXRLpw-Tu9H1lFaClRuKzpYzj1Jqq5xHx8tCaG1zJfLCgsbKM-GgKAE158K5Wc6kQ1BSo9KKezEkF73vKrTrDuPGzNsuNOmkEQmTSSZVonhPVaGNMaA3q5B-DjvDwHzlZfq8TMrLfOdl9kkkelFMcPOM4c_6H9UnsD1vQQ</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Wang, Tongrui</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7608-2186</orcidid></search><sort><creationdate>20240601</creationdate><title>Equivariant Morse index of min–max G-invariant minimal hypersurfaces</title><author>Wang, Tongrui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-eda9bfe446a5dfed298366a75378a06ecf13d0890e6223ddb714de0546e5652f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Hyperspaces</topic><topic>Invariants</topic><topic>Lie groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Riemann manifold</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tongrui</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tongrui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equivariant Morse index of min–max G-invariant minimal hypersurfaces</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>389</volume><issue>2</issue><spage>1599</spage><epage>1637</epage><pages>1599-1637</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>For a closed Riemannian manifold M n + 1 with a compact Lie group G acting as isometries, the equivariant min–max theory gives the existence and the potential abundance of minimal G -invariant hypersurfaces provided 3 ≤ codim ( G · p ) ≤ 7 for all p ∈ M . In this paper, we show a compactness theorem for these min–max minimal G -hypersurfaces and construct a G -invariant Jacobi field on the limit. Combining with an equivariant bumpy metrics theorem, we obtain a C G ∞ -generic finiteness result for min–max G -hypersurfaces with area uniformly bounded. As a main application, we further generalize the Morse index estimates for min–max minimal hypersurfaces to the equivariant setting. Namely, the closed G -invariant minimal hypersurface Σ ⊂ M constructed by the equivariant min–max on a k -dimensional homotopy class can be chosen to satisfy Index G ( Σ ) ≤ k .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-023-02681-z</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0001-7608-2186</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-5831
ispartof Mathematische annalen, 2024-06, Vol.389 (2), p.1599-1637
issn 0025-5831
1432-1807
language eng
recordid cdi_proquest_journals_3054462245
source SpringerLink Journals - AutoHoldings
subjects Hyperspaces
Invariants
Lie groups
Mathematics
Mathematics and Statistics
Riemann manifold
Theorems
title Equivariant Morse index of min–max G-invariant minimal hypersurfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equivariant%20Morse%20index%20of%20min%E2%80%93max%20G-invariant%20minimal%20hypersurfaces&rft.jtitle=Mathematische%20annalen&rft.au=Wang,%20Tongrui&rft.date=2024-06-01&rft.volume=389&rft.issue=2&rft.spage=1599&rft.epage=1637&rft.pages=1599-1637&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-023-02681-z&rft_dat=%3Cproquest_cross%3E3054462245%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054462245&rft_id=info:pmid/&rfr_iscdi=true