Equivariant Morse index of min–max G-invariant minimal hypersurfaces

For a closed Riemannian manifold M n + 1 with a compact Lie group G acting as isometries, the equivariant min–max theory gives the existence and the potential abundance of minimal G -invariant hypersurfaces provided 3 ≤ codim ( G · p ) ≤ 7 for all p ∈ M . In this paper, we show a compactness theorem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2024-06, Vol.389 (2), p.1599-1637
1. Verfasser: Wang, Tongrui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a closed Riemannian manifold M n + 1 with a compact Lie group G acting as isometries, the equivariant min–max theory gives the existence and the potential abundance of minimal G -invariant hypersurfaces provided 3 ≤ codim ( G · p ) ≤ 7 for all p ∈ M . In this paper, we show a compactness theorem for these min–max minimal G -hypersurfaces and construct a G -invariant Jacobi field on the limit. Combining with an equivariant bumpy metrics theorem, we obtain a C G ∞ -generic finiteness result for min–max G -hypersurfaces with area uniformly bounded. As a main application, we further generalize the Morse index estimates for min–max minimal hypersurfaces to the equivariant setting. Namely, the closed G -invariant minimal hypersurface Σ ⊂ M constructed by the equivariant min–max on a k -dimensional homotopy class can be chosen to satisfy Index G ( Σ ) ≤ k .
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-023-02681-z