Equivariant Morse index of min–max G-invariant minimal hypersurfaces
For a closed Riemannian manifold M n + 1 with a compact Lie group G acting as isometries, the equivariant min–max theory gives the existence and the potential abundance of minimal G -invariant hypersurfaces provided 3 ≤ codim ( G · p ) ≤ 7 for all p ∈ M . In this paper, we show a compactness theorem...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2024-06, Vol.389 (2), p.1599-1637 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a closed Riemannian manifold
M
n
+
1
with a compact Lie group
G
acting as isometries, the equivariant min–max theory gives the existence and the potential abundance of minimal
G
-invariant hypersurfaces provided
3
≤
codim
(
G
·
p
)
≤
7
for all
p
∈
M
. In this paper, we show a compactness theorem for these min–max minimal
G
-hypersurfaces and construct a
G
-invariant Jacobi field on the limit. Combining with an equivariant bumpy metrics theorem, we obtain a
C
G
∞
-generic finiteness result for min–max
G
-hypersurfaces with area uniformly bounded. As a main application, we further generalize the Morse index estimates for min–max minimal hypersurfaces to the equivariant setting. Namely, the closed
G
-invariant minimal hypersurface
Σ
⊂
M
constructed by the equivariant min–max on a
k
-dimensional homotopy class can be chosen to satisfy
Index
G
(
Σ
)
≤
k
. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-023-02681-z |