Demand Estimation Under Uncertain Consideration Sets

In “Demand Estimation Under Uncertain Consideration Sets,” Jagabathula, Mitrofanov, and Vulcano investigate statistical properties of the consider-then-choose (CTC) models, which gained recent attention in the operations literature as an alternative to the classical random utility (RUM) models. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research 2024-01, Vol.72 (1), p.19-42
1. Verfasser: Jagabathula, Srikanth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In “Demand Estimation Under Uncertain Consideration Sets,” Jagabathula, Mitrofanov, and Vulcano investigate statistical properties of the consider-then-choose (CTC) models, which gained recent attention in the operations literature as an alternative to the classical random utility (RUM) models. The general class of CTC models is defined by a general joint distribution over ranking lists and consideration sets. Starting from the important result that the CTC and RUM classes are equivalent in terms of explanatory power, the authors characterize conditions under which CTC models become identified. Then, they propose expectation-maximization (EM) methods to solve the related estimation problem for different subclasses of CTC models, building from the provably convergent outer-approximation algorithm. Finally, subclasses of CTC models are tested on a synthetic data set and on two real data sets: one from a grocery chain and one from a peer-to-peer (P2P) car sharing platform. The results are consistent in assessing that CTC models tend to dominate RUM models with respect to prediction accuracy when the training data are noisy (i.e., transaction records do not necessarily reflect the physical inventory records) and when there is significant asymmetry between the training data set and the testing data set. These conditions are naturally verified in P2P sharing platforms and in retailers working on long-term forecasts (e.g., semester long) or geographical aggregate forecasts (e.g., forecasts at the distribution center level). To estimate customer demand, choice models rely both on what the individuals do and do not purchase. A customer may not purchase a product because it was not offered but also because it was not considered. To account for this behavior, existing literature has proposed the so-called consider-then-choose (CTC) models, which posit that customers sample a consideration set and then choose the most preferred product from the intersection of the offer set and the consideration set. CTC models have been studied quite extensively in the marketing literature. More recently, they have gained popularity within the operations management (OM) literature to make assortment and pricing decisions. Despite their richness, CTC models are difficult to estimate in practice because firms typically do not observe customers’ consideration sets. Therefore, the common assumption in OM has been that customers consider everything on offer, so the consideration set is th
ISSN:0030-364X
1526-5463
DOI:10.1287/opre.2022.0006