On some determinants involving the tangent function
Let p be an odd prime and let a , b ∈ Z with p ∤ a b . In this paper,we mainly evaluate T p ( δ ) ( a , b , x ) : = det x + tan π a j 2 + b k 2 p δ ⩽ j , k ⩽ ( p - 1 ) / 2 ( δ = 0 , 1 ) . For example, in the case p ≡ 3 ( mod 4 ) , we show that T p ( 1 ) ( a , b , 0 ) = 0 and T p ( 0 ) ( a , b , x )...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2024-06, Vol.64 (2), p.309-332 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
p
be an odd prime and let
a
,
b
∈
Z
with
p
∤
a
b
. In this paper,we mainly evaluate
T
p
(
δ
)
(
a
,
b
,
x
)
:
=
det
x
+
tan
π
a
j
2
+
b
k
2
p
δ
⩽
j
,
k
⩽
(
p
-
1
)
/
2
(
δ
=
0
,
1
)
.
For example, in the case
p
≡
3
(
mod
4
)
, we show that
T
p
(
1
)
(
a
,
b
,
0
)
=
0
and
T
p
(
0
)
(
a
,
b
,
x
)
=
2
(
p
-
1
)
/
2
p
(
p
+
1
)
/
4
if
(
ab
p
)
=
1
,
p
(
p
+
1
)
/
4
if
(
ab
p
)
=
-
1
,
where
(
·
p
)
is the Legendre symbol. When
(
-
a
b
p
)
=
-
1
, we also evaluate the determinant
det
[
x
+
cot
π
a
j
2
+
b
k
2
p
]
1
⩽
j
,
k
⩽
(
p
-
1
)
/
2
.
In addition, we pose several conjectures one of which states that for any prime
p
≡
3
(
mod
4
)
, there is an integer
x
p
≡
1
(
mod
p
)
such that
det
sec
2
π
(
j
-
k
)
2
p
0
⩽
j
,
k
⩽
p
-
1
=
-
p
(
p
+
3
)
/
2
x
p
2
. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-023-00827-w |