Dynamical Behavior and Numerical Simulation of an Influenza A Epidemic Model with Log-Normal Ornstein–Uhlenbeck Process
Influenza remains one of the most widespread epidemics, characterized by serious pathogenicity and high lethality, posing a significant threat to public health. This paper focuses on an influenza A infection model that includes vaccination and asymptomatic patients. The deterministic model examines...
Gespeichert in:
Veröffentlicht in: | Qualitative theory of dynamical systems 2024-09, Vol.23 (4), Article 190 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Influenza remains one of the most widespread epidemics, characterized by serious pathogenicity and high lethality, posing a significant threat to public health. This paper focuses on an influenza A infection model that includes vaccination and asymptomatic patients. The deterministic model examines the existence and local asymptotic stability of equilibria. In light of the influence of environmental disruption on the spread of disease, we develop a stochastic model in which the transmission rate follows a log-normal Ornstein–Uhlenbeck process. To demonstrate the dynamic behavior of the stochastic model, we verify the existence and uniqueness of the global positive solution. The establishment of suitable Lyapunov functions allows for the determination of sufficient conditions for the stationary distribution and extinction of the disease. Furthermore, the expression of the local density function around the quasi-endemic equilibrium is represented. Eventually, numerical simulations are conducted to support theoretical results and explore the effect of environmental noise. Our findings indicate that high noise intensity can expedite the extinction of the disease, while low noise intensity can facilitate the disease reaching a stationary distribution. This information may be valuable in developing strategies for disease prevention and control. |
---|---|
ISSN: | 1575-5460 1662-3592 |
DOI: | 10.1007/s12346-024-01051-7 |