Stencil-Printed Scalable Radial Thermoelectric Device Using Sustainable Manufacturing Methods
In this study, we used n-chitosan-Bi2Te2.7Se0.3 and p-chitosan-Bi0.5Sb1.5Te3 composite inks to print a circular thermoelectric generator (TEG) device using a low-energy-input curing method. Thermoelectric (TE) composite films were fabricated using varying sizes of thermoelectric particles and a smal...
Gespeichert in:
Veröffentlicht in: | Sustainability 2024-05, Vol.16 (9), p.3560 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 3560 |
container_title | Sustainability |
container_volume | 16 |
creator | Jang, Eunhwa Ambade, Rohan B Banerjee, Priyanshu Topoleski, L. D. Timmie Madan, Deepa |
description | In this study, we used n-chitosan-Bi2Te2.7Se0.3 and p-chitosan-Bi0.5Sb1.5Te3 composite inks to print a circular thermoelectric generator (TEG) device using a low-energy-input curing method. Thermoelectric (TE) composite films were fabricated using varying sizes of thermoelectric particles and a small chitosan binder (0.05 wt. %). The particles and binder were hot pressed at an applied pressure of 200 MPa and cured at 200 °C for 30 min. We achieved ZT of 0.35 for the n-type and 0.7 for the p-type TE composite films measured at room temperature. A radial TEG was fabricated using the best-performing n-type and p-type composite inks and achieved a power output of 87 µW and a power density of 727 µW/cm2 at a temperature difference of 35 K; these are among the best-reported values for printed TEG devices. Using a low-energy-input fabrication method, we eliminated the need for high-temperature and long-duration curing processes to fabricate printing devices. Thus, we envisage that the low-energy-input curing process and cost-effective printable strategy presented in this work pave the way for sustainable manufacturing of large-scale energy harvesting TEG devices. |
doi_str_mv | 10.3390/su16093560 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3053206723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793570090</galeid><sourcerecordid>A793570090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-6d06d920f180c0dc4c8e007bc32ddddb6d9820a8ad3742c9de6b8c0c705c295f3</originalsourceid><addsrcrecordid>eNpVkd9Lw0AMx4soOKYv_gUFnxQ607v11-OYvwYbyro9Srnm0u1G1867q-h_780JuuQhId9PEkg87yqEAecZ3JkujCHjUQwnXo9BEgYhRHD6Lz_3Lo3ZgDPOwyyMe95bbqlBVQevWjWWpJ-jqEVZkz8XUonaX6xJb1uqCa1W6N_Th0Lyl0Y1Kz_vjBWq-cFnoukqgbbTe2VGdt1Kc-GdVaI2dPkb-97y8WExfg6mL0-T8WgaIGeJDWIJscwYVGEKCBKHmBJAUjpVOiudmDIQqZA8GTLMJMVlioAJRMiyqOJ97_owd6fb946MLTZtpxu3suAQcQZxwrijBgdqJWoqVFO1Vgt0LmmrsG2oUq4-StwJE4AMXMPNUYNjLH3aleiMKSb5_Ji9PbCoW2M0VcVOq63QX0UIxf49xd97-DfcxYFp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053206723</pqid></control><display><type>article</type><title>Stencil-Printed Scalable Radial Thermoelectric Device Using Sustainable Manufacturing Methods</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jang, Eunhwa ; Ambade, Rohan B ; Banerjee, Priyanshu ; Topoleski, L. D. Timmie ; Madan, Deepa</creator><creatorcontrib>Jang, Eunhwa ; Ambade, Rohan B ; Banerjee, Priyanshu ; Topoleski, L. D. Timmie ; Madan, Deepa</creatorcontrib><description>In this study, we used n-chitosan-Bi2Te2.7Se0.3 and p-chitosan-Bi0.5Sb1.5Te3 composite inks to print a circular thermoelectric generator (TEG) device using a low-energy-input curing method. Thermoelectric (TE) composite films were fabricated using varying sizes of thermoelectric particles and a small chitosan binder (0.05 wt. %). The particles and binder were hot pressed at an applied pressure of 200 MPa and cured at 200 °C for 30 min. We achieved ZT of 0.35 for the n-type and 0.7 for the p-type TE composite films measured at room temperature. A radial TEG was fabricated using the best-performing n-type and p-type composite inks and achieved a power output of 87 µW and a power density of 727 µW/cm2 at a temperature difference of 35 K; these are among the best-reported values for printed TEG devices. Using a low-energy-input fabrication method, we eliminated the need for high-temperature and long-duration curing processes to fabricate printing devices. Thus, we envisage that the low-energy-input curing process and cost-effective printable strategy presented in this work pave the way for sustainable manufacturing of large-scale energy harvesting TEG devices.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16093560</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Additive manufacturing ; Electric power production ; Electrodes ; Electromagnetism ; Energy efficiency ; Heat conductivity ; Home appliances industry ; Hot pressing ; Mechanization, Military ; Microscopy ; Military paraphernalia ; Power supply ; Research methodology ; Self sufficiency ; Sensors ; Solvents ; Sustainable development ; Technology application ; Temperature ; Wireless sensor networks</subject><ispartof>Sustainability, 2024-05, Vol.16 (9), p.3560</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c327t-6d06d920f180c0dc4c8e007bc32ddddb6d9820a8ad3742c9de6b8c0c705c295f3</cites><orcidid>0000-0002-4578-1117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jang, Eunhwa</creatorcontrib><creatorcontrib>Ambade, Rohan B</creatorcontrib><creatorcontrib>Banerjee, Priyanshu</creatorcontrib><creatorcontrib>Topoleski, L. D. Timmie</creatorcontrib><creatorcontrib>Madan, Deepa</creatorcontrib><title>Stencil-Printed Scalable Radial Thermoelectric Device Using Sustainable Manufacturing Methods</title><title>Sustainability</title><description>In this study, we used n-chitosan-Bi2Te2.7Se0.3 and p-chitosan-Bi0.5Sb1.5Te3 composite inks to print a circular thermoelectric generator (TEG) device using a low-energy-input curing method. Thermoelectric (TE) composite films were fabricated using varying sizes of thermoelectric particles and a small chitosan binder (0.05 wt. %). The particles and binder were hot pressed at an applied pressure of 200 MPa and cured at 200 °C for 30 min. We achieved ZT of 0.35 for the n-type and 0.7 for the p-type TE composite films measured at room temperature. A radial TEG was fabricated using the best-performing n-type and p-type composite inks and achieved a power output of 87 µW and a power density of 727 µW/cm2 at a temperature difference of 35 K; these are among the best-reported values for printed TEG devices. Using a low-energy-input fabrication method, we eliminated the need for high-temperature and long-duration curing processes to fabricate printing devices. Thus, we envisage that the low-energy-input curing process and cost-effective printable strategy presented in this work pave the way for sustainable manufacturing of large-scale energy harvesting TEG devices.</description><subject>Additive manufacturing</subject><subject>Electric power production</subject><subject>Electrodes</subject><subject>Electromagnetism</subject><subject>Energy efficiency</subject><subject>Heat conductivity</subject><subject>Home appliances industry</subject><subject>Hot pressing</subject><subject>Mechanization, Military</subject><subject>Microscopy</subject><subject>Military paraphernalia</subject><subject>Power supply</subject><subject>Research methodology</subject><subject>Self sufficiency</subject><subject>Sensors</subject><subject>Solvents</subject><subject>Sustainable development</subject><subject>Technology application</subject><subject>Temperature</subject><subject>Wireless sensor networks</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkd9Lw0AMx4soOKYv_gUFnxQ607v11-OYvwYbyro9Srnm0u1G1867q-h_780JuuQhId9PEkg87yqEAecZ3JkujCHjUQwnXo9BEgYhRHD6Lz_3Lo3ZgDPOwyyMe95bbqlBVQevWjWWpJ-jqEVZkz8XUonaX6xJb1uqCa1W6N_Th0Lyl0Y1Kz_vjBWq-cFnoukqgbbTe2VGdt1Kc-GdVaI2dPkb-97y8WExfg6mL0-T8WgaIGeJDWIJscwYVGEKCBKHmBJAUjpVOiudmDIQqZA8GTLMJMVlioAJRMiyqOJ97_owd6fb946MLTZtpxu3suAQcQZxwrijBgdqJWoqVFO1Vgt0LmmrsG2oUq4-StwJE4AMXMPNUYNjLH3aleiMKSb5_Ji9PbCoW2M0VcVOq63QX0UIxf49xd97-DfcxYFp</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Jang, Eunhwa</creator><creator>Ambade, Rohan B</creator><creator>Banerjee, Priyanshu</creator><creator>Topoleski, L. D. Timmie</creator><creator>Madan, Deepa</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4578-1117</orcidid></search><sort><creationdate>20240501</creationdate><title>Stencil-Printed Scalable Radial Thermoelectric Device Using Sustainable Manufacturing Methods</title><author>Jang, Eunhwa ; Ambade, Rohan B ; Banerjee, Priyanshu ; Topoleski, L. D. Timmie ; Madan, Deepa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-6d06d920f180c0dc4c8e007bc32ddddb6d9820a8ad3742c9de6b8c0c705c295f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Additive manufacturing</topic><topic>Electric power production</topic><topic>Electrodes</topic><topic>Electromagnetism</topic><topic>Energy efficiency</topic><topic>Heat conductivity</topic><topic>Home appliances industry</topic><topic>Hot pressing</topic><topic>Mechanization, Military</topic><topic>Microscopy</topic><topic>Military paraphernalia</topic><topic>Power supply</topic><topic>Research methodology</topic><topic>Self sufficiency</topic><topic>Sensors</topic><topic>Solvents</topic><topic>Sustainable development</topic><topic>Technology application</topic><topic>Temperature</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Eunhwa</creatorcontrib><creatorcontrib>Ambade, Rohan B</creatorcontrib><creatorcontrib>Banerjee, Priyanshu</creatorcontrib><creatorcontrib>Topoleski, L. D. Timmie</creatorcontrib><creatorcontrib>Madan, Deepa</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Eunhwa</au><au>Ambade, Rohan B</au><au>Banerjee, Priyanshu</au><au>Topoleski, L. D. Timmie</au><au>Madan, Deepa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stencil-Printed Scalable Radial Thermoelectric Device Using Sustainable Manufacturing Methods</atitle><jtitle>Sustainability</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>16</volume><issue>9</issue><spage>3560</spage><pages>3560-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>In this study, we used n-chitosan-Bi2Te2.7Se0.3 and p-chitosan-Bi0.5Sb1.5Te3 composite inks to print a circular thermoelectric generator (TEG) device using a low-energy-input curing method. Thermoelectric (TE) composite films were fabricated using varying sizes of thermoelectric particles and a small chitosan binder (0.05 wt. %). The particles and binder were hot pressed at an applied pressure of 200 MPa and cured at 200 °C for 30 min. We achieved ZT of 0.35 for the n-type and 0.7 for the p-type TE composite films measured at room temperature. A radial TEG was fabricated using the best-performing n-type and p-type composite inks and achieved a power output of 87 µW and a power density of 727 µW/cm2 at a temperature difference of 35 K; these are among the best-reported values for printed TEG devices. Using a low-energy-input fabrication method, we eliminated the need for high-temperature and long-duration curing processes to fabricate printing devices. Thus, we envisage that the low-energy-input curing process and cost-effective printable strategy presented in this work pave the way for sustainable manufacturing of large-scale energy harvesting TEG devices.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16093560</doi><orcidid>https://orcid.org/0000-0002-4578-1117</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2024-05, Vol.16 (9), p.3560 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_3053206723 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Additive manufacturing Electric power production Electrodes Electromagnetism Energy efficiency Heat conductivity Home appliances industry Hot pressing Mechanization, Military Microscopy Military paraphernalia Power supply Research methodology Self sufficiency Sensors Solvents Sustainable development Technology application Temperature Wireless sensor networks |
title | Stencil-Printed Scalable Radial Thermoelectric Device Using Sustainable Manufacturing Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A29%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stencil-Printed%20Scalable%20Radial%20Thermoelectric%20Device%20Using%20Sustainable%20Manufacturing%20Methods&rft.jtitle=Sustainability&rft.au=Jang,%20Eunhwa&rft.date=2024-05-01&rft.volume=16&rft.issue=9&rft.spage=3560&rft.pages=3560-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16093560&rft_dat=%3Cgale_proqu%3EA793570090%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053206723&rft_id=info:pmid/&rft_galeid=A793570090&rfr_iscdi=true |