Stencil-Printed Scalable Radial Thermoelectric Device Using Sustainable Manufacturing Methods

In this study, we used n-chitosan-Bi2Te2.7Se0.3 and p-chitosan-Bi0.5Sb1.5Te3 composite inks to print a circular thermoelectric generator (TEG) device using a low-energy-input curing method. Thermoelectric (TE) composite films were fabricated using varying sizes of thermoelectric particles and a smal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2024-05, Vol.16 (9), p.3560
Hauptverfasser: Jang, Eunhwa, Ambade, Rohan B, Banerjee, Priyanshu, Topoleski, L. D. Timmie, Madan, Deepa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 3560
container_title Sustainability
container_volume 16
creator Jang, Eunhwa
Ambade, Rohan B
Banerjee, Priyanshu
Topoleski, L. D. Timmie
Madan, Deepa
description In this study, we used n-chitosan-Bi2Te2.7Se0.3 and p-chitosan-Bi0.5Sb1.5Te3 composite inks to print a circular thermoelectric generator (TEG) device using a low-energy-input curing method. Thermoelectric (TE) composite films were fabricated using varying sizes of thermoelectric particles and a small chitosan binder (0.05 wt. %). The particles and binder were hot pressed at an applied pressure of 200 MPa and cured at 200 °C for 30 min. We achieved ZT of 0.35 for the n-type and 0.7 for the p-type TE composite films measured at room temperature. A radial TEG was fabricated using the best-performing n-type and p-type composite inks and achieved a power output of 87 µW and a power density of 727 µW/cm2 at a temperature difference of 35 K; these are among the best-reported values for printed TEG devices. Using a low-energy-input fabrication method, we eliminated the need for high-temperature and long-duration curing processes to fabricate printing devices. Thus, we envisage that the low-energy-input curing process and cost-effective printable strategy presented in this work pave the way for sustainable manufacturing of large-scale energy harvesting TEG devices.
doi_str_mv 10.3390/su16093560
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3053206723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793570090</galeid><sourcerecordid>A793570090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-6d06d920f180c0dc4c8e007bc32ddddb6d9820a8ad3742c9de6b8c0c705c295f3</originalsourceid><addsrcrecordid>eNpVkd9Lw0AMx4soOKYv_gUFnxQ607v11-OYvwYbyro9Srnm0u1G1867q-h_780JuuQhId9PEkg87yqEAecZ3JkujCHjUQwnXo9BEgYhRHD6Lz_3Lo3ZgDPOwyyMe95bbqlBVQevWjWWpJ-jqEVZkz8XUonaX6xJb1uqCa1W6N_Th0Lyl0Y1Kz_vjBWq-cFnoukqgbbTe2VGdt1Kc-GdVaI2dPkb-97y8WExfg6mL0-T8WgaIGeJDWIJscwYVGEKCBKHmBJAUjpVOiudmDIQqZA8GTLMJMVlioAJRMiyqOJ97_owd6fb946MLTZtpxu3suAQcQZxwrijBgdqJWoqVFO1Vgt0LmmrsG2oUq4-StwJE4AMXMPNUYNjLH3aleiMKSb5_Ji9PbCoW2M0VcVOq63QX0UIxf49xd97-DfcxYFp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053206723</pqid></control><display><type>article</type><title>Stencil-Printed Scalable Radial Thermoelectric Device Using Sustainable Manufacturing Methods</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jang, Eunhwa ; Ambade, Rohan B ; Banerjee, Priyanshu ; Topoleski, L. D. Timmie ; Madan, Deepa</creator><creatorcontrib>Jang, Eunhwa ; Ambade, Rohan B ; Banerjee, Priyanshu ; Topoleski, L. D. Timmie ; Madan, Deepa</creatorcontrib><description>In this study, we used n-chitosan-Bi2Te2.7Se0.3 and p-chitosan-Bi0.5Sb1.5Te3 composite inks to print a circular thermoelectric generator (TEG) device using a low-energy-input curing method. Thermoelectric (TE) composite films were fabricated using varying sizes of thermoelectric particles and a small chitosan binder (0.05 wt. %). The particles and binder were hot pressed at an applied pressure of 200 MPa and cured at 200 °C for 30 min. We achieved ZT of 0.35 for the n-type and 0.7 for the p-type TE composite films measured at room temperature. A radial TEG was fabricated using the best-performing n-type and p-type composite inks and achieved a power output of 87 µW and a power density of 727 µW/cm2 at a temperature difference of 35 K; these are among the best-reported values for printed TEG devices. Using a low-energy-input fabrication method, we eliminated the need for high-temperature and long-duration curing processes to fabricate printing devices. Thus, we envisage that the low-energy-input curing process and cost-effective printable strategy presented in this work pave the way for sustainable manufacturing of large-scale energy harvesting TEG devices.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16093560</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Additive manufacturing ; Electric power production ; Electrodes ; Electromagnetism ; Energy efficiency ; Heat conductivity ; Home appliances industry ; Hot pressing ; Mechanization, Military ; Microscopy ; Military paraphernalia ; Power supply ; Research methodology ; Self sufficiency ; Sensors ; Solvents ; Sustainable development ; Technology application ; Temperature ; Wireless sensor networks</subject><ispartof>Sustainability, 2024-05, Vol.16 (9), p.3560</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c327t-6d06d920f180c0dc4c8e007bc32ddddb6d9820a8ad3742c9de6b8c0c705c295f3</cites><orcidid>0000-0002-4578-1117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jang, Eunhwa</creatorcontrib><creatorcontrib>Ambade, Rohan B</creatorcontrib><creatorcontrib>Banerjee, Priyanshu</creatorcontrib><creatorcontrib>Topoleski, L. D. Timmie</creatorcontrib><creatorcontrib>Madan, Deepa</creatorcontrib><title>Stencil-Printed Scalable Radial Thermoelectric Device Using Sustainable Manufacturing Methods</title><title>Sustainability</title><description>In this study, we used n-chitosan-Bi2Te2.7Se0.3 and p-chitosan-Bi0.5Sb1.5Te3 composite inks to print a circular thermoelectric generator (TEG) device using a low-energy-input curing method. Thermoelectric (TE) composite films were fabricated using varying sizes of thermoelectric particles and a small chitosan binder (0.05 wt. %). The particles and binder were hot pressed at an applied pressure of 200 MPa and cured at 200 °C for 30 min. We achieved ZT of 0.35 for the n-type and 0.7 for the p-type TE composite films measured at room temperature. A radial TEG was fabricated using the best-performing n-type and p-type composite inks and achieved a power output of 87 µW and a power density of 727 µW/cm2 at a temperature difference of 35 K; these are among the best-reported values for printed TEG devices. Using a low-energy-input fabrication method, we eliminated the need for high-temperature and long-duration curing processes to fabricate printing devices. Thus, we envisage that the low-energy-input curing process and cost-effective printable strategy presented in this work pave the way for sustainable manufacturing of large-scale energy harvesting TEG devices.</description><subject>Additive manufacturing</subject><subject>Electric power production</subject><subject>Electrodes</subject><subject>Electromagnetism</subject><subject>Energy efficiency</subject><subject>Heat conductivity</subject><subject>Home appliances industry</subject><subject>Hot pressing</subject><subject>Mechanization, Military</subject><subject>Microscopy</subject><subject>Military paraphernalia</subject><subject>Power supply</subject><subject>Research methodology</subject><subject>Self sufficiency</subject><subject>Sensors</subject><subject>Solvents</subject><subject>Sustainable development</subject><subject>Technology application</subject><subject>Temperature</subject><subject>Wireless sensor networks</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkd9Lw0AMx4soOKYv_gUFnxQ607v11-OYvwYbyro9Srnm0u1G1867q-h_780JuuQhId9PEkg87yqEAecZ3JkujCHjUQwnXo9BEgYhRHD6Lz_3Lo3ZgDPOwyyMe95bbqlBVQevWjWWpJ-jqEVZkz8XUonaX6xJb1uqCa1W6N_Th0Lyl0Y1Kz_vjBWq-cFnoukqgbbTe2VGdt1Kc-GdVaI2dPkb-97y8WExfg6mL0-T8WgaIGeJDWIJscwYVGEKCBKHmBJAUjpVOiudmDIQqZA8GTLMJMVlioAJRMiyqOJ97_owd6fb946MLTZtpxu3suAQcQZxwrijBgdqJWoqVFO1Vgt0LmmrsG2oUq4-StwJE4AMXMPNUYNjLH3aleiMKSb5_Ji9PbCoW2M0VcVOq63QX0UIxf49xd97-DfcxYFp</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Jang, Eunhwa</creator><creator>Ambade, Rohan B</creator><creator>Banerjee, Priyanshu</creator><creator>Topoleski, L. D. Timmie</creator><creator>Madan, Deepa</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4578-1117</orcidid></search><sort><creationdate>20240501</creationdate><title>Stencil-Printed Scalable Radial Thermoelectric Device Using Sustainable Manufacturing Methods</title><author>Jang, Eunhwa ; Ambade, Rohan B ; Banerjee, Priyanshu ; Topoleski, L. D. Timmie ; Madan, Deepa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-6d06d920f180c0dc4c8e007bc32ddddb6d9820a8ad3742c9de6b8c0c705c295f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Additive manufacturing</topic><topic>Electric power production</topic><topic>Electrodes</topic><topic>Electromagnetism</topic><topic>Energy efficiency</topic><topic>Heat conductivity</topic><topic>Home appliances industry</topic><topic>Hot pressing</topic><topic>Mechanization, Military</topic><topic>Microscopy</topic><topic>Military paraphernalia</topic><topic>Power supply</topic><topic>Research methodology</topic><topic>Self sufficiency</topic><topic>Sensors</topic><topic>Solvents</topic><topic>Sustainable development</topic><topic>Technology application</topic><topic>Temperature</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Eunhwa</creatorcontrib><creatorcontrib>Ambade, Rohan B</creatorcontrib><creatorcontrib>Banerjee, Priyanshu</creatorcontrib><creatorcontrib>Topoleski, L. D. Timmie</creatorcontrib><creatorcontrib>Madan, Deepa</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Eunhwa</au><au>Ambade, Rohan B</au><au>Banerjee, Priyanshu</au><au>Topoleski, L. D. Timmie</au><au>Madan, Deepa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stencil-Printed Scalable Radial Thermoelectric Device Using Sustainable Manufacturing Methods</atitle><jtitle>Sustainability</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>16</volume><issue>9</issue><spage>3560</spage><pages>3560-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>In this study, we used n-chitosan-Bi2Te2.7Se0.3 and p-chitosan-Bi0.5Sb1.5Te3 composite inks to print a circular thermoelectric generator (TEG) device using a low-energy-input curing method. Thermoelectric (TE) composite films were fabricated using varying sizes of thermoelectric particles and a small chitosan binder (0.05 wt. %). The particles and binder were hot pressed at an applied pressure of 200 MPa and cured at 200 °C for 30 min. We achieved ZT of 0.35 for the n-type and 0.7 for the p-type TE composite films measured at room temperature. A radial TEG was fabricated using the best-performing n-type and p-type composite inks and achieved a power output of 87 µW and a power density of 727 µW/cm2 at a temperature difference of 35 K; these are among the best-reported values for printed TEG devices. Using a low-energy-input fabrication method, we eliminated the need for high-temperature and long-duration curing processes to fabricate printing devices. Thus, we envisage that the low-energy-input curing process and cost-effective printable strategy presented in this work pave the way for sustainable manufacturing of large-scale energy harvesting TEG devices.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16093560</doi><orcidid>https://orcid.org/0000-0002-4578-1117</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2024-05, Vol.16 (9), p.3560
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_3053206723
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Additive manufacturing
Electric power production
Electrodes
Electromagnetism
Energy efficiency
Heat conductivity
Home appliances industry
Hot pressing
Mechanization, Military
Microscopy
Military paraphernalia
Power supply
Research methodology
Self sufficiency
Sensors
Solvents
Sustainable development
Technology application
Temperature
Wireless sensor networks
title Stencil-Printed Scalable Radial Thermoelectric Device Using Sustainable Manufacturing Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A29%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stencil-Printed%20Scalable%20Radial%20Thermoelectric%20Device%20Using%20Sustainable%20Manufacturing%20Methods&rft.jtitle=Sustainability&rft.au=Jang,%20Eunhwa&rft.date=2024-05-01&rft.volume=16&rft.issue=9&rft.spage=3560&rft.pages=3560-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16093560&rft_dat=%3Cgale_proqu%3EA793570090%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053206723&rft_id=info:pmid/&rft_galeid=A793570090&rfr_iscdi=true