Stencil-Printed Scalable Radial Thermoelectric Device Using Sustainable Manufacturing Methods

In this study, we used n-chitosan-Bi2Te2.7Se0.3 and p-chitosan-Bi0.5Sb1.5Te3 composite inks to print a circular thermoelectric generator (TEG) device using a low-energy-input curing method. Thermoelectric (TE) composite films were fabricated using varying sizes of thermoelectric particles and a smal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2024-05, Vol.16 (9), p.3560
Hauptverfasser: Jang, Eunhwa, Ambade, Rohan B, Banerjee, Priyanshu, Topoleski, L. D. Timmie, Madan, Deepa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we used n-chitosan-Bi2Te2.7Se0.3 and p-chitosan-Bi0.5Sb1.5Te3 composite inks to print a circular thermoelectric generator (TEG) device using a low-energy-input curing method. Thermoelectric (TE) composite films were fabricated using varying sizes of thermoelectric particles and a small chitosan binder (0.05 wt. %). The particles and binder were hot pressed at an applied pressure of 200 MPa and cured at 200 °C for 30 min. We achieved ZT of 0.35 for the n-type and 0.7 for the p-type TE composite films measured at room temperature. A radial TEG was fabricated using the best-performing n-type and p-type composite inks and achieved a power output of 87 µW and a power density of 727 µW/cm2 at a temperature difference of 35 K; these are among the best-reported values for printed TEG devices. Using a low-energy-input fabrication method, we eliminated the need for high-temperature and long-duration curing processes to fabricate printing devices. Thus, we envisage that the low-energy-input curing process and cost-effective printable strategy presented in this work pave the way for sustainable manufacturing of large-scale energy harvesting TEG devices.
ISSN:2071-1050
2071-1050
DOI:10.3390/su16093560