Personalized Federated Learning Incorporating Adaptive Model Pruning at the Edge
Edge devices employing federated learning encounter several obstacles, including (1) the non-independent and identically distributed (Non-IID) nature of client data, (2) limitations due to communication bottlenecks, and (3) constraints on computational resources. To surmount the Non-IID data challen...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-05, Vol.13 (9), p.1738 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Edge devices employing federated learning encounter several obstacles, including (1) the non-independent and identically distributed (Non-IID) nature of client data, (2) limitations due to communication bottlenecks, and (3) constraints on computational resources. To surmount the Non-IID data challenge, personalized federated learning has been introduced, which involves training tailored networks at the edge; nevertheless, these methods often exhibit inconsistency in performance. In response to these concerns, a novel framework for personalized federated learning that incorporates adaptive pruning of edge-side data is proposed in this paper. This approach, through a two-staged pruning process, creates customized models while ensuring strong generalization capabilities. Concurrently, by utilizing sparse models, it significantly condenses the model parameters, markedly diminishing both the computational burden and communication overhead on edge nodes. This method achieves a remarkable compression ratio of 3.7% on the Non-IID dataset FEMNIST, with the training accuracy remaining nearly unaffected. Furthermore, the total training duration is reduced by 46.4% when compared with the standard baseline method. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics13091738 |