Triangulated characterizations of singularities

This work presents a range of triangulated characterizations for important classes of singularities such as derived splinters, rational singularities, and Du Bois singularities. An invariant called 'level' in a triangulated category can be used to measure the failure of a variety to have a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Lank, Pat, Venkatesh, Sridhar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presents a range of triangulated characterizations for important classes of singularities such as derived splinters, rational singularities, and Du Bois singularities. An invariant called 'level' in a triangulated category can be used to measure the failure of a variety to have a prescribed singularity type. We provide explicit computations of this invariant for reduced Nagata schemes of Krull dimension one and for affine cones over smooth projective hypersurfaces. Furthermore, these computations are utilized to produce upper bounds for Rouquier dimension on the respective bounded derived categories.
ISSN:2331-8422