Deep Dual-Stream Convolutional Neural Networks for Cardiac Image Semantic Segmentation

Cardiac image segmentation is essential when applying biomedical informatics to improve industrial healthcare applications. To extract context and detailed information more efficiently and further improve cardiac image segmentation accuracy, we present a novel deep dual-stream convolutional neural n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2024-05, Vol.20 (5), p.7440-7448
Hauptverfasser: Hu, Hengqi, Fang, Bin, Ran, Yuting, Wei, Xuekai, Xian, Weizhi, Zhou, Mingliang, Kwong, Sam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cardiac image segmentation is essential when applying biomedical informatics to improve industrial healthcare applications. To extract context and detailed information more efficiently and further improve cardiac image segmentation accuracy, we present a novel deep dual-stream convolutional neural network (CNN) for cardiac image semantic segmentation in this article. We use a body stream and a shape stream, respectively, in this method. First, in the body stream we propose integrating a gated fully fusion module to fuse multilevel features in the encoder and decoder paths. In addition, we integrate a feature aggregation module to extract the multiscale context. Second, in the shape stream, we propose using a gated shape CNN exploiting multilevel context to extract detailed information, such as boundary and shape features. Finally, we apply a multitask loss function to align the predicted masks with the ground truth labels. Our experiments on the public cardiac magnetic resonance image dataset show significant performance in the left and right ventricular cavities and myocardium compared to the state-of-the-art algorithms.
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2024.3361021