Comprehensive and Comparative Analysis of QCA-based Circuit Designs for Next-generation Computation
For the past several decades, VLSI design has been focused on lowering the size, power, and delay. As of now, this miniaturization does not seems to be a possible way to address the demands of consumers. Quantum Dot Cellular Automata (QCA) technology is a promising technique that is able to provide...
Gespeichert in:
Veröffentlicht in: | ACM computing surveys 2024-05, Vol.56 (5), p.1-36, Article 120 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the past several decades, VLSI design has been focused on lowering the size, power, and delay. As of now, this miniaturization does not seems to be a possible way to address the demands of consumers. Quantum Dot Cellular Automata (QCA) technology is a promising technique that is able to provide low-power high-speed circuits at nano-scale. Much work has been done in this area where the researchers have proposed a variety of combinational and sequential logic circuits for future computation. This article presents a concrete review of design approaches, logic circuits, clocking schemes, implementation tools, and possible fabrication methodologies presented so far in QCA technology. A critical comparative analysis is provided on the basis of reported performance parameters in the domain. The aim of this article is to collect all necessary information into a single source, highlight the research challenges to be taken in the near future, and enlighten the path for upcoming researchers in the area. |
---|---|
ISSN: | 0360-0300 1557-7341 |
DOI: | 10.1145/3622932 |