Packing sets in Euclidean space by affine transformations
For Borel subsets \(\Theta\subset O(d)\times \mathbb{R}^d\) (the set of all rigid motions) and \(E\subset \mathbb{R}^d\), we define \begin{align*} \Theta(E):=\bigcup_{(g,z)\in \Theta}(gE+z). \end{align*} In this paper, we investigate the Lebesgue measure and Hausdorff dimension of \(\Theta(E)\) give...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Iosevich, Alex Mattila, Pertti Palsson, Eyvindur Pham, Minh-Quy Pham, Thang Senger, Steven Chun-Yen, Shen |
description | For Borel subsets \(\Theta\subset O(d)\times \mathbb{R}^d\) (the set of all rigid motions) and \(E\subset \mathbb{R}^d\), we define \begin{align*} \Theta(E):=\bigcup_{(g,z)\in \Theta}(gE+z). \end{align*} In this paper, we investigate the Lebesgue measure and Hausdorff dimension of \(\Theta(E)\) given the dimensions of the Borel sets \(E\) and \(\Theta\), when \(\Theta\) has product form. We also study this question by replacing rigid motions with the class of dilations and translations; and similarity transformations. The dimensional thresholds are sharp. Our results are variants of some previously known results in the literature when \(E\) is restricted to smooth objects such as spheres, \(k\)-planes, and surfaces. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3051697393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051697393</sourcerecordid><originalsourceid>FETCH-proquest_journals_30516973933</originalsourceid><addsrcrecordid>eNqNyrEOgjAQgOHGxESivMMlziSlFbCzwTg6uJMTW1PEK_bK4Nvr4AM4_cP3L0SmtC6L_U6plciZBymlqhtVVToT5oz9w9Md2CYGT9DO_ehvFgl4wt7C9Q3onCcLKSKxC_GJyQfijVg6HNnmv67F9theDqdiiuE1W07dEOZIX-q0rMraNNpo_d_1AX4BNpE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051697393</pqid></control><display><type>article</type><title>Packing sets in Euclidean space by affine transformations</title><source>Free E- Journals</source><creator>Iosevich, Alex ; Mattila, Pertti ; Palsson, Eyvindur ; Pham, Minh-Quy ; Pham, Thang ; Senger, Steven ; Chun-Yen, Shen</creator><creatorcontrib>Iosevich, Alex ; Mattila, Pertti ; Palsson, Eyvindur ; Pham, Minh-Quy ; Pham, Thang ; Senger, Steven ; Chun-Yen, Shen</creatorcontrib><description>For Borel subsets \(\Theta\subset O(d)\times \mathbb{R}^d\) (the set of all rigid motions) and \(E\subset \mathbb{R}^d\), we define \begin{align*} \Theta(E):=\bigcup_{(g,z)\in \Theta}(gE+z). \end{align*} In this paper, we investigate the Lebesgue measure and Hausdorff dimension of \(\Theta(E)\) given the dimensions of the Borel sets \(E\) and \(\Theta\), when \(\Theta\) has product form. We also study this question by replacing rigid motions with the class of dilations and translations; and similarity transformations. The dimensional thresholds are sharp. Our results are variants of some previously known results in the literature when \(E\) is restricted to smooth objects such as spheres, \(k\)-planes, and surfaces.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Affine transformations ; Borel sets ; Euclidean geometry ; Translations</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Iosevich, Alex</creatorcontrib><creatorcontrib>Mattila, Pertti</creatorcontrib><creatorcontrib>Palsson, Eyvindur</creatorcontrib><creatorcontrib>Pham, Minh-Quy</creatorcontrib><creatorcontrib>Pham, Thang</creatorcontrib><creatorcontrib>Senger, Steven</creatorcontrib><creatorcontrib>Chun-Yen, Shen</creatorcontrib><title>Packing sets in Euclidean space by affine transformations</title><title>arXiv.org</title><description>For Borel subsets \(\Theta\subset O(d)\times \mathbb{R}^d\) (the set of all rigid motions) and \(E\subset \mathbb{R}^d\), we define \begin{align*} \Theta(E):=\bigcup_{(g,z)\in \Theta}(gE+z). \end{align*} In this paper, we investigate the Lebesgue measure and Hausdorff dimension of \(\Theta(E)\) given the dimensions of the Borel sets \(E\) and \(\Theta\), when \(\Theta\) has product form. We also study this question by replacing rigid motions with the class of dilations and translations; and similarity transformations. The dimensional thresholds are sharp. Our results are variants of some previously known results in the literature when \(E\) is restricted to smooth objects such as spheres, \(k\)-planes, and surfaces.</description><subject>Affine transformations</subject><subject>Borel sets</subject><subject>Euclidean geometry</subject><subject>Translations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEOgjAQgOHGxESivMMlziSlFbCzwTg6uJMTW1PEK_bK4Nvr4AM4_cP3L0SmtC6L_U6plciZBymlqhtVVToT5oz9w9Md2CYGT9DO_ehvFgl4wt7C9Q3onCcLKSKxC_GJyQfijVg6HNnmv67F9theDqdiiuE1W07dEOZIX-q0rMraNNpo_d_1AX4BNpE</recordid><startdate>20240506</startdate><enddate>20240506</enddate><creator>Iosevich, Alex</creator><creator>Mattila, Pertti</creator><creator>Palsson, Eyvindur</creator><creator>Pham, Minh-Quy</creator><creator>Pham, Thang</creator><creator>Senger, Steven</creator><creator>Chun-Yen, Shen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240506</creationdate><title>Packing sets in Euclidean space by affine transformations</title><author>Iosevich, Alex ; Mattila, Pertti ; Palsson, Eyvindur ; Pham, Minh-Quy ; Pham, Thang ; Senger, Steven ; Chun-Yen, Shen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30516973933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Affine transformations</topic><topic>Borel sets</topic><topic>Euclidean geometry</topic><topic>Translations</topic><toplevel>online_resources</toplevel><creatorcontrib>Iosevich, Alex</creatorcontrib><creatorcontrib>Mattila, Pertti</creatorcontrib><creatorcontrib>Palsson, Eyvindur</creatorcontrib><creatorcontrib>Pham, Minh-Quy</creatorcontrib><creatorcontrib>Pham, Thang</creatorcontrib><creatorcontrib>Senger, Steven</creatorcontrib><creatorcontrib>Chun-Yen, Shen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iosevich, Alex</au><au>Mattila, Pertti</au><au>Palsson, Eyvindur</au><au>Pham, Minh-Quy</au><au>Pham, Thang</au><au>Senger, Steven</au><au>Chun-Yen, Shen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Packing sets in Euclidean space by affine transformations</atitle><jtitle>arXiv.org</jtitle><date>2024-05-06</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>For Borel subsets \(\Theta\subset O(d)\times \mathbb{R}^d\) (the set of all rigid motions) and \(E\subset \mathbb{R}^d\), we define \begin{align*} \Theta(E):=\bigcup_{(g,z)\in \Theta}(gE+z). \end{align*} In this paper, we investigate the Lebesgue measure and Hausdorff dimension of \(\Theta(E)\) given the dimensions of the Borel sets \(E\) and \(\Theta\), when \(\Theta\) has product form. We also study this question by replacing rigid motions with the class of dilations and translations; and similarity transformations. The dimensional thresholds are sharp. Our results are variants of some previously known results in the literature when \(E\) is restricted to smooth objects such as spheres, \(k\)-planes, and surfaces.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3051697393 |
source | Free E- Journals |
subjects | Affine transformations Borel sets Euclidean geometry Translations |
title | Packing sets in Euclidean space by affine transformations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T16%3A20%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Packing%20sets%20in%20Euclidean%20space%20by%20affine%20transformations&rft.jtitle=arXiv.org&rft.au=Iosevich,%20Alex&rft.date=2024-05-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3051697393%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051697393&rft_id=info:pmid/&rfr_iscdi=true |