Packing sets in Euclidean space by affine transformations

For Borel subsets \(\Theta\subset O(d)\times \mathbb{R}^d\) (the set of all rigid motions) and \(E\subset \mathbb{R}^d\), we define \begin{align*} \Theta(E):=\bigcup_{(g,z)\in \Theta}(gE+z). \end{align*} In this paper, we investigate the Lebesgue measure and Hausdorff dimension of \(\Theta(E)\) give...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Iosevich, Alex, Mattila, Pertti, Palsson, Eyvindur, Pham, Minh-Quy, Pham, Thang, Senger, Steven, Chun-Yen, Shen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Iosevich, Alex
Mattila, Pertti
Palsson, Eyvindur
Pham, Minh-Quy
Pham, Thang
Senger, Steven
Chun-Yen, Shen
description For Borel subsets \(\Theta\subset O(d)\times \mathbb{R}^d\) (the set of all rigid motions) and \(E\subset \mathbb{R}^d\), we define \begin{align*} \Theta(E):=\bigcup_{(g,z)\in \Theta}(gE+z). \end{align*} In this paper, we investigate the Lebesgue measure and Hausdorff dimension of \(\Theta(E)\) given the dimensions of the Borel sets \(E\) and \(\Theta\), when \(\Theta\) has product form. We also study this question by replacing rigid motions with the class of dilations and translations; and similarity transformations. The dimensional thresholds are sharp. Our results are variants of some previously known results in the literature when \(E\) is restricted to smooth objects such as spheres, \(k\)-planes, and surfaces.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3051697393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051697393</sourcerecordid><originalsourceid>FETCH-proquest_journals_30516973933</originalsourceid><addsrcrecordid>eNqNyrEOgjAQgOHGxESivMMlziSlFbCzwTg6uJMTW1PEK_bK4Nvr4AM4_cP3L0SmtC6L_U6plciZBymlqhtVVToT5oz9w9Md2CYGT9DO_ehvFgl4wt7C9Q3onCcLKSKxC_GJyQfijVg6HNnmv67F9theDqdiiuE1W07dEOZIX-q0rMraNNpo_d_1AX4BNpE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051697393</pqid></control><display><type>article</type><title>Packing sets in Euclidean space by affine transformations</title><source>Free E- Journals</source><creator>Iosevich, Alex ; Mattila, Pertti ; Palsson, Eyvindur ; Pham, Minh-Quy ; Pham, Thang ; Senger, Steven ; Chun-Yen, Shen</creator><creatorcontrib>Iosevich, Alex ; Mattila, Pertti ; Palsson, Eyvindur ; Pham, Minh-Quy ; Pham, Thang ; Senger, Steven ; Chun-Yen, Shen</creatorcontrib><description>For Borel subsets \(\Theta\subset O(d)\times \mathbb{R}^d\) (the set of all rigid motions) and \(E\subset \mathbb{R}^d\), we define \begin{align*} \Theta(E):=\bigcup_{(g,z)\in \Theta}(gE+z). \end{align*} In this paper, we investigate the Lebesgue measure and Hausdorff dimension of \(\Theta(E)\) given the dimensions of the Borel sets \(E\) and \(\Theta\), when \(\Theta\) has product form. We also study this question by replacing rigid motions with the class of dilations and translations; and similarity transformations. The dimensional thresholds are sharp. Our results are variants of some previously known results in the literature when \(E\) is restricted to smooth objects such as spheres, \(k\)-planes, and surfaces.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Affine transformations ; Borel sets ; Euclidean geometry ; Translations</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Iosevich, Alex</creatorcontrib><creatorcontrib>Mattila, Pertti</creatorcontrib><creatorcontrib>Palsson, Eyvindur</creatorcontrib><creatorcontrib>Pham, Minh-Quy</creatorcontrib><creatorcontrib>Pham, Thang</creatorcontrib><creatorcontrib>Senger, Steven</creatorcontrib><creatorcontrib>Chun-Yen, Shen</creatorcontrib><title>Packing sets in Euclidean space by affine transformations</title><title>arXiv.org</title><description>For Borel subsets \(\Theta\subset O(d)\times \mathbb{R}^d\) (the set of all rigid motions) and \(E\subset \mathbb{R}^d\), we define \begin{align*} \Theta(E):=\bigcup_{(g,z)\in \Theta}(gE+z). \end{align*} In this paper, we investigate the Lebesgue measure and Hausdorff dimension of \(\Theta(E)\) given the dimensions of the Borel sets \(E\) and \(\Theta\), when \(\Theta\) has product form. We also study this question by replacing rigid motions with the class of dilations and translations; and similarity transformations. The dimensional thresholds are sharp. Our results are variants of some previously known results in the literature when \(E\) is restricted to smooth objects such as spheres, \(k\)-planes, and surfaces.</description><subject>Affine transformations</subject><subject>Borel sets</subject><subject>Euclidean geometry</subject><subject>Translations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEOgjAQgOHGxESivMMlziSlFbCzwTg6uJMTW1PEK_bK4Nvr4AM4_cP3L0SmtC6L_U6plciZBymlqhtVVToT5oz9w9Md2CYGT9DO_ehvFgl4wt7C9Q3onCcLKSKxC_GJyQfijVg6HNnmv67F9theDqdiiuE1W07dEOZIX-q0rMraNNpo_d_1AX4BNpE</recordid><startdate>20240506</startdate><enddate>20240506</enddate><creator>Iosevich, Alex</creator><creator>Mattila, Pertti</creator><creator>Palsson, Eyvindur</creator><creator>Pham, Minh-Quy</creator><creator>Pham, Thang</creator><creator>Senger, Steven</creator><creator>Chun-Yen, Shen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240506</creationdate><title>Packing sets in Euclidean space by affine transformations</title><author>Iosevich, Alex ; Mattila, Pertti ; Palsson, Eyvindur ; Pham, Minh-Quy ; Pham, Thang ; Senger, Steven ; Chun-Yen, Shen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30516973933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Affine transformations</topic><topic>Borel sets</topic><topic>Euclidean geometry</topic><topic>Translations</topic><toplevel>online_resources</toplevel><creatorcontrib>Iosevich, Alex</creatorcontrib><creatorcontrib>Mattila, Pertti</creatorcontrib><creatorcontrib>Palsson, Eyvindur</creatorcontrib><creatorcontrib>Pham, Minh-Quy</creatorcontrib><creatorcontrib>Pham, Thang</creatorcontrib><creatorcontrib>Senger, Steven</creatorcontrib><creatorcontrib>Chun-Yen, Shen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iosevich, Alex</au><au>Mattila, Pertti</au><au>Palsson, Eyvindur</au><au>Pham, Minh-Quy</au><au>Pham, Thang</au><au>Senger, Steven</au><au>Chun-Yen, Shen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Packing sets in Euclidean space by affine transformations</atitle><jtitle>arXiv.org</jtitle><date>2024-05-06</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>For Borel subsets \(\Theta\subset O(d)\times \mathbb{R}^d\) (the set of all rigid motions) and \(E\subset \mathbb{R}^d\), we define \begin{align*} \Theta(E):=\bigcup_{(g,z)\in \Theta}(gE+z). \end{align*} In this paper, we investigate the Lebesgue measure and Hausdorff dimension of \(\Theta(E)\) given the dimensions of the Borel sets \(E\) and \(\Theta\), when \(\Theta\) has product form. We also study this question by replacing rigid motions with the class of dilations and translations; and similarity transformations. The dimensional thresholds are sharp. Our results are variants of some previously known results in the literature when \(E\) is restricted to smooth objects such as spheres, \(k\)-planes, and surfaces.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_3051697393
source Free E- Journals
subjects Affine transformations
Borel sets
Euclidean geometry
Translations
title Packing sets in Euclidean space by affine transformations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T16%3A20%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Packing%20sets%20in%20Euclidean%20space%20by%20affine%20transformations&rft.jtitle=arXiv.org&rft.au=Iosevich,%20Alex&rft.date=2024-05-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3051697393%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051697393&rft_id=info:pmid/&rfr_iscdi=true