Packing sets in Euclidean space by affine transformations

For Borel subsets \(\Theta\subset O(d)\times \mathbb{R}^d\) (the set of all rigid motions) and \(E\subset \mathbb{R}^d\), we define \begin{align*} \Theta(E):=\bigcup_{(g,z)\in \Theta}(gE+z). \end{align*} In this paper, we investigate the Lebesgue measure and Hausdorff dimension of \(\Theta(E)\) give...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Iosevich, Alex, Mattila, Pertti, Palsson, Eyvindur, Pham, Minh-Quy, Pham, Thang, Senger, Steven, Chun-Yen, Shen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For Borel subsets \(\Theta\subset O(d)\times \mathbb{R}^d\) (the set of all rigid motions) and \(E\subset \mathbb{R}^d\), we define \begin{align*} \Theta(E):=\bigcup_{(g,z)\in \Theta}(gE+z). \end{align*} In this paper, we investigate the Lebesgue measure and Hausdorff dimension of \(\Theta(E)\) given the dimensions of the Borel sets \(E\) and \(\Theta\), when \(\Theta\) has product form. We also study this question by replacing rigid motions with the class of dilations and translations; and similarity transformations. The dimensional thresholds are sharp. Our results are variants of some previously known results in the literature when \(E\) is restricted to smooth objects such as spheres, \(k\)-planes, and surfaces.
ISSN:2331-8422