Leveraging Large Language Models to Enhance Domain Expert Inclusion in Data Science Workflows

Domain experts can play a crucial role in guiding data scientists to optimize machine learning models while ensuring contextual relevance for downstream use. However, in current workflows, such collaboration is challenging due to differing expertise, abstract documentation practices, and lack of acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Shih, Jasmine Y, Mohanty, Vishal, Katsis, Yannis, Hariharan Subramonyam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Domain experts can play a crucial role in guiding data scientists to optimize machine learning models while ensuring contextual relevance for downstream use. However, in current workflows, such collaboration is challenging due to differing expertise, abstract documentation practices, and lack of access and visibility into low-level implementation artifacts. To address these challenges and enable domain expert participation, we introduce CellSync, a collaboration framework comprising (1) a Jupyter Notebook extension that continuously tracks changes to dataframes and model metrics and (2) a Large Language Model powered visualization dashboard that makes those changes interpretable to domain experts. Through CellSync's cell-level dataset visualization with code summaries, domain experts can interactively examine how individual data and modeling operations impact different data segments. The chat features enable data-centric conversations and targeted feedback to data scientists. Our preliminary evaluation shows that CellSync provides transparency and promotes critical discussions about the intents and implications of data operations.
ISSN:2331-8422