Existence Theorem for Sub-Lorentzian Problems

In this paper, we prove the existence theorem for longest paths in sub-Lorentzian problems, which generalizes the classical theorem for globally hyperbolic Lorentzian manifolds. We specifically address the case of invariant structures on homogeneous spaces, as the conditions for the existence theore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamical and control systems 2024-06, Vol.30 (2), Article 10
Hauptverfasser: Lokutsievskiy, L. V., Podobryaev, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we prove the existence theorem for longest paths in sub-Lorentzian problems, which generalizes the classical theorem for globally hyperbolic Lorentzian manifolds. We specifically address the case of invariant structures on homogeneous spaces, as the conditions for the existence theorem in this case can be significantly simplified. In particular, it turns out that longest paths exist for any left-invariant sub-Lorentzian structures on Carnot groups.
ISSN:1079-2724
1573-8698
DOI:10.1007/s10883-024-09694-0