Existence Theorem for Sub-Lorentzian Problems
In this paper, we prove the existence theorem for longest paths in sub-Lorentzian problems, which generalizes the classical theorem for globally hyperbolic Lorentzian manifolds. We specifically address the case of invariant structures on homogeneous spaces, as the conditions for the existence theore...
Gespeichert in:
Veröffentlicht in: | Journal of dynamical and control systems 2024-06, Vol.30 (2), Article 10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove the existence theorem for longest paths in sub-Lorentzian problems, which generalizes the classical theorem for globally hyperbolic Lorentzian manifolds. We specifically address the case of invariant structures on homogeneous spaces, as the conditions for the existence theorem in this case can be significantly simplified. In particular, it turns out that longest paths exist for any left-invariant sub-Lorentzian structures on Carnot groups. |
---|---|
ISSN: | 1079-2724 1573-8698 |
DOI: | 10.1007/s10883-024-09694-0 |