Direct Estimates of the Rate of Approximation by the Kantorovich Operator in Variable Exponent Lebesgue Spaces

We establish two direct estimates by K -functionals of the rate of approximation by the Kantorovich operators in variable exponent Lebesgue spaces. They extend known results in the non-variable exponent Lebesgue spaces. The approach applied heavily relies on the boundedness of the Hardy–Littlewood m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2024-05, Vol.21 (3), Article 112
Hauptverfasser: Draganov, Borislav R., Gadjev, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish two direct estimates by K -functionals of the rate of approximation by the Kantorovich operators in variable exponent Lebesgue spaces. They extend known results in the non-variable exponent Lebesgue spaces. The approach applied heavily relies on the boundedness of the Hardy–Littlewood maximal operator.
ISSN:1660-5446
1660-5454
DOI:10.1007/s00009-024-02650-z