Direct Estimates of the Rate of Approximation by the Kantorovich Operator in Variable Exponent Lebesgue Spaces
We establish two direct estimates by K -functionals of the rate of approximation by the Kantorovich operators in variable exponent Lebesgue spaces. They extend known results in the non-variable exponent Lebesgue spaces. The approach applied heavily relies on the boundedness of the Hardy–Littlewood m...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2024-05, Vol.21 (3), Article 112 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish two direct estimates by
K
-functionals of the rate of approximation by the Kantorovich operators in variable exponent Lebesgue spaces. They extend known results in the non-variable exponent Lebesgue spaces. The approach applied heavily relies on the boundedness of the Hardy–Littlewood maximal operator. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-024-02650-z |