Commutativity Preservers of Incidence Algebras
Let I ( X , K ) be the incidence algebra of a finite connected poset X over a field K and D ( X , K ) its subalgebra consisting of diagonal elements. We describe the bijective linear maps φ : I ( X , K ) → I ( X , K ) that strongly preserve the commutativity and satisfy φ ( D ( X , K ) ) = D ( X ,...
Gespeichert in:
Veröffentlicht in: | Algebras and representation theory 2024-04, Vol.27 (2), p.1457-1476 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
I
(
X
,
K
) be the incidence algebra of a finite connected poset
X
over a field
K
and
D
(
X
,
K
) its subalgebra consisting of diagonal elements. We describe the bijective linear maps
φ
:
I
(
X
,
K
)
→
I
(
X
,
K
)
that strongly preserve the commutativity and satisfy
φ
(
D
(
X
,
K
)
)
=
D
(
X
,
K
)
. We prove that such a map
φ
is a composition of a commutativity preserver of shift type and a commutativity preserver associated to a quadruple
(
θ
,
σ
,
c
,
κ
)
of simpler maps
θ
,
σ
,
c
and a sequence
κ
of elements of
K
. |
---|---|
ISSN: | 1386-923X 1572-9079 |
DOI: | 10.1007/s10468-024-10265-x |