Commutativity Preservers of Incidence Algebras

Let I ( X ,  K ) be the incidence algebra of a finite connected poset X over a field K and D ( X ,  K ) its subalgebra consisting of diagonal elements. We describe the bijective linear maps φ : I ( X , K ) → I ( X , K ) that strongly preserve the commutativity and satisfy φ ( D ( X , K ) ) = D ( X ,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebras and representation theory 2024-04, Vol.27 (2), p.1457-1476
Hauptverfasser: Fornaroli, Érica Z., Khrypchenko, Mykola, Santulo, Ednei A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let I ( X ,  K ) be the incidence algebra of a finite connected poset X over a field K and D ( X ,  K ) its subalgebra consisting of diagonal elements. We describe the bijective linear maps φ : I ( X , K ) → I ( X , K ) that strongly preserve the commutativity and satisfy φ ( D ( X , K ) ) = D ( X , K ) . We prove that such a map φ is a composition of a commutativity preserver of shift type and a commutativity preserver associated to a quadruple ( θ , σ , c , κ ) of simpler maps θ , σ , c and a sequence κ of elements of K .
ISSN:1386-923X
1572-9079
DOI:10.1007/s10468-024-10265-x