Weak convergence of the extremes of branching Lévy processes with regularly varying tails
We study the weak convergence of the extremes of supercritical branching Lévy processes $\{\mathbb{X}_t, t \ge0\}$ whose spatial motions are Lévy processes with regularly varying tails. The result is drastically different from the case of branching Brownian motions. We prove that, when properly reno...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 2024-06, Vol.61 (2), p.622-643 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the weak convergence of the extremes of supercritical branching Lévy processes
$\{\mathbb{X}_t, t \ge0\}$
whose spatial motions are Lévy processes with regularly varying tails. The result is drastically different from the case of branching Brownian motions. We prove that, when properly renormalized,
$\mathbb{X}_t$
converges weakly. As a consequence, we obtain a limit theorem for the order statistics of
$\mathbb{X}_t$
. |
---|---|
ISSN: | 0021-9002 1475-6072 |
DOI: | 10.1017/jpr.2023.103 |