Rotations and boosts of Hermite functions

We provide transformation matrices for arbitrary Lorentz transformations of multidimensional Hermite functions in any dimension. These serve as a valuable tool for analyzing spacetime properties of MHS fields, and aid in the description of the relativistic harmonic oscillator and digital image manip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Maro Cvitan, Predrag Dominis Prester, Giaccari, Stefano, Mateo Paulišić, Vuković, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide transformation matrices for arbitrary Lorentz transformations of multidimensional Hermite functions in any dimension. These serve as a valuable tool for analyzing spacetime properties of MHS fields, and aid in the description of the relativistic harmonic oscillator and digital image manipulation. We also focus on finite boosts and rotations around specific axes, enabling us to identify the Lorentz Lie algebra generators. As an application and to establish a contact with the literature we construct a basis in which the two dimensional rotation operator is diagonal. We comment on the use of hypergeometric functions, the Wigner d-functions, Kravchuk polynomials, Jacobi polynomials and generalized associated Legendre functions.
ISSN:2331-8422