Rotations and boosts of Hermite functions
We provide transformation matrices for arbitrary Lorentz transformations of multidimensional Hermite functions in any dimension. These serve as a valuable tool for analyzing spacetime properties of MHS fields, and aid in the description of the relativistic harmonic oscillator and digital image manip...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We provide transformation matrices for arbitrary Lorentz transformations of multidimensional Hermite functions in any dimension. These serve as a valuable tool for analyzing spacetime properties of MHS fields, and aid in the description of the relativistic harmonic oscillator and digital image manipulation. We also focus on finite boosts and rotations around specific axes, enabling us to identify the Lorentz Lie algebra generators. As an application and to establish a contact with the literature we construct a basis in which the two dimensional rotation operator is diagonal. We comment on the use of hypergeometric functions, the Wigner d-functions, Kravchuk polynomials, Jacobi polynomials and generalized associated Legendre functions. |
---|---|
ISSN: | 2331-8422 |