Magnetoelectric coupling in Ba:Pb(Zr,Ti)O3/Co40Fe40B20 nanoscale waveguides studied by propagating spin-wave spectroscopy
In this study, we report on the characterization of the magnetoelectric coupling coefficient in Ba-substituted Pb(Zr, Ti)O3/Co40Fe40B20 (BPZT/CoFeB) nanoscaled waveguides with lateral dimensions of 700 nm using propagating spin-wave spectroscopy. The characterization was conducted in a Damon–Eshbach...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2024-04, Vol.124 (18) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we report on the characterization of the magnetoelectric coupling coefficient in Ba-substituted Pb(Zr, Ti)O3/Co40Fe40B20 (BPZT/CoFeB) nanoscaled waveguides with lateral dimensions of 700 nm using propagating spin-wave spectroscopy. The characterization was conducted in a Damon–Eshbach configuration to maximize the magnetoelastic coupling strength, as predicted by strain distribution calculations using finite element simulations. The spin-wave resonance frequency is controlled by applying bias voltages on the magnetoelectric waveguide. The magnitude of the frequency shift was correlated with the strength of the magnetoelastic field, which reached a maximum value of 5.71 mT in our experiments. In addition, the results demonstrated that the coupling coefficient behavior is associated with the hysteretic ferroelectric nature of BPZT, reaching a maximum value of 1.69 mT/V. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0198501 |