Octahedral coordinates from the Wirtinger presentation
Let \(\rho\) be a representation of a knot group (or more generally, the fundamental group of a tangle complement) into \(\operatorname{SL}_2(\mathbb{C})\) expressed in terms of the Wirtinger generators of a diagram \(D\). In this note we give a direct algebraic formula for the geometric parameters...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(\rho\) be a representation of a knot group (or more generally, the fundamental group of a tangle complement) into \(\operatorname{SL}_2(\mathbb{C})\) expressed in terms of the Wirtinger generators of a diagram \(D\). In this note we give a direct algebraic formula for the geometric parameters of the octahedral decomposition of the knot complement associated to \(D\). Our formula gives a new, explicit criterion for whether \(\rho\) occurs as a critical point of the diagram's Neumann-Zagier--Yokota potential function. |
---|---|
ISSN: | 2331-8422 |